期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
多重约束非负矩阵分解的非平稳噪声语音增强(英文)
被引量:
1
1
作者
邹月娴
刘诗涵
王迪松
《控制理论与应用》
EI
CAS
CSCD
北大核心
2017年第6期761-768,共8页
低信噪比非稳态噪声环境中的语音增强仍是一个开放且具有挑战性的任务.为了提高传统的基于非负矩阵分解(nonnegative matrix factorization,NMF)的语音增强算法性能,同时考虑到语音信号的时频稀疏特性和非稳态噪声信号的低秩特性,本文...
低信噪比非稳态噪声环境中的语音增强仍是一个开放且具有挑战性的任务.为了提高传统的基于非负矩阵分解(nonnegative matrix factorization,NMF)的语音增强算法性能,同时考虑到语音信号的时频稀疏特性和非稳态噪声信号的低秩特性,本文提出了一种基于多重约束的非负矩阵分解语音增强算法(multi-constraint nonnegative matrix factorization speech enhancement,MC–NMFSE).在训练阶段,采用干净语音训练数据集和噪声训练数据集分别构建语音字典和噪声字典.在语音增强阶段,在非负矩阵分解目标函数中增加语音分量的稀疏性约束和噪声信号的低秩性约束条件,MC–NMFSE能够更好地从带噪语音中获得语音分量的表示,从而提高语音增强效果.通过实验表明,在大量不同非平稳噪声条件和不同信噪比条件下,与传统的基于NMF的语音增强方法相比,MC–NMFSE能获得较低的语音失真和更好的非稳态噪声抑制能力.
展开更多
关键词
语音增强
低秩约束
稀疏约束
非负矩阵分解
非稳态噪声
下载PDF
职称材料
题名
多重约束非负矩阵分解的非平稳噪声语音增强(英文)
被引量:
1
1
作者
邹月娴
刘诗涵
王迪松
机构
北京大学信息工程学院现代信号与数据处理实验室
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2017年第6期761-768,共8页
基金
Supported by National Natural Science Foundation of China(61271309)
Shenzhen Science Research Program(CXZZ20140509093608290)
文摘
低信噪比非稳态噪声环境中的语音增强仍是一个开放且具有挑战性的任务.为了提高传统的基于非负矩阵分解(nonnegative matrix factorization,NMF)的语音增强算法性能,同时考虑到语音信号的时频稀疏特性和非稳态噪声信号的低秩特性,本文提出了一种基于多重约束的非负矩阵分解语音增强算法(multi-constraint nonnegative matrix factorization speech enhancement,MC–NMFSE).在训练阶段,采用干净语音训练数据集和噪声训练数据集分别构建语音字典和噪声字典.在语音增强阶段,在非负矩阵分解目标函数中增加语音分量的稀疏性约束和噪声信号的低秩性约束条件,MC–NMFSE能够更好地从带噪语音中获得语音分量的表示,从而提高语音增强效果.通过实验表明,在大量不同非平稳噪声条件和不同信噪比条件下,与传统的基于NMF的语音增强方法相比,MC–NMFSE能获得较低的语音失真和更好的非稳态噪声抑制能力.
关键词
语音增强
低秩约束
稀疏约束
非负矩阵分解
非稳态噪声
Keywords
speech enhancement
low-rank
sparsity
nonnegative matrix factorization
nonstationary noise
分类号
TN912.3 [电子电信—通信与信息系统]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
多重约束非负矩阵分解的非平稳噪声语音增强(英文)
邹月娴
刘诗涵
王迪松
《控制理论与应用》
EI
CAS
CSCD
北大核心
2017
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部