数据流的无限性、连续性和速度快等特点,使得挖掘出所有准确的数据流频繁项通常是不可能的.算法的空间复杂度和时间复杂度通常是评价频繁项挖掘算法优劣的两个主要度量.通过引入局部性原理改进数据流近似频繁项的挖掘算法,该算法的空间...数据流的无限性、连续性和速度快等特点,使得挖掘出所有准确的数据流频繁项通常是不可能的.算法的空间复杂度和时间复杂度通常是评价频繁项挖掘算法优劣的两个主要度量.通过引入局部性原理改进数据流近似频繁项的挖掘算法,该算法的空间复杂性为O(1/ε),数据流每个数据项的最坏处理时间是O(1/ε),其最好处理时间是O(1),输出结果的频率值误差为sum from i=2 to j(1-μi)×ki。展开更多
文摘数据流的无限性、连续性和速度快等特点,使得挖掘出所有准确的数据流频繁项通常是不可能的.算法的空间复杂度和时间复杂度通常是评价频繁项挖掘算法优劣的两个主要度量.通过引入局部性原理改进数据流近似频繁项的挖掘算法,该算法的空间复杂性为O(1/ε),数据流每个数据项的最坏处理时间是O(1/ε),其最好处理时间是O(1),输出结果的频率值误差为sum from i=2 to j(1-μi)×ki。