It is shown that the leading edge protuberances on the flippers of a humpback whale can significantly improve the hydrodynamic performance. The present study numerically investigates the flow control mechanisms of the...It is shown that the leading edge protuberances on the flippers of a humpback whale can significantly improve the hydrodynamic performance. The present study numerically investigates the flow control mechanisms of the leading edge protuberances on a static wing and a pitching wing. For static wings, the performance in both laminar flow and turbulent flow are studied in the context of the flow control mechanisms. It is shown that the protuberances have slight effects on the performance of static wings in laminar flow. Also, it could be deduced that non-uniform downwash does not delay the stall occurrence in either laminar flow or turbulent flow. In turbulent flow, the leading edge protuberances act in a manner similar to vortex generators, enhancing the momentum exchange within the boundary layer. Streamwise vortices do contribute to the delay of the stall occurrence. The normal vorticity component also plays an important role in delaying the stall occurrence. However, for the pitching wing, the effect of leading edge protuberances is negligible in turbulent flow. Detailed analysis of the flow field indicates that for the wing with the leading edge protuberances, the leading edge vortices become more complex, while the thrust jet and the vortices in the wake are not changed significantly by the leading edge protuberances.展开更多
This paper reviews the numerical models of various cavitating flows around hydrofoils. Numerical models relating to cavitation flows, including mass transfer models and turbulence models, are summarized at first. Then...This paper reviews the numerical models of various cavitating flows around hydrofoils. Numerical models relating to cavitation flows, including mass transfer models and turbulence models, are summarized at first. Then numerical results and analysis of flow characteristics for the cavitating flows around twisted hydrofoils, truncated hydrofoil and tip leakage are discussed respectively. For mean flow fields, Reynolds averaged Navier-Stokes(RANS) simulation associated with a kind of nonlinear turbulence model is found to be an economic and robust numerical approach for different kinds of cavitating flows including cloud cavitation, tip cavitation and tip leakage cavitation. To predict the fluctuations of pressure and velocity, large eddy simulation(LES) and detached eddy simulation(DES) are two effective approaches. Finally, a few open questions are proposed for future research.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11072152,1472173)
文摘It is shown that the leading edge protuberances on the flippers of a humpback whale can significantly improve the hydrodynamic performance. The present study numerically investigates the flow control mechanisms of the leading edge protuberances on a static wing and a pitching wing. For static wings, the performance in both laminar flow and turbulent flow are studied in the context of the flow control mechanisms. It is shown that the protuberances have slight effects on the performance of static wings in laminar flow. Also, it could be deduced that non-uniform downwash does not delay the stall occurrence in either laminar flow or turbulent flow. In turbulent flow, the leading edge protuberances act in a manner similar to vortex generators, enhancing the momentum exchange within the boundary layer. Streamwise vortices do contribute to the delay of the stall occurrence. The normal vorticity component also plays an important role in delaying the stall occurrence. However, for the pitching wing, the effect of leading edge protuberances is negligible in turbulent flow. Detailed analysis of the flow field indicates that for the wing with the leading edge protuberances, the leading edge vortices become more complex, while the thrust jet and the vortices in the wake are not changed significantly by the leading edge protuberances.
基金Project supported by the National Natural Science Foundation of China(Grant No.11772195)the Key Project of National Natural Science Foundation of China(Grant No.11332009)
文摘This paper reviews the numerical models of various cavitating flows around hydrofoils. Numerical models relating to cavitation flows, including mass transfer models and turbulence models, are summarized at first. Then numerical results and analysis of flow characteristics for the cavitating flows around twisted hydrofoils, truncated hydrofoil and tip leakage are discussed respectively. For mean flow fields, Reynolds averaged Navier-Stokes(RANS) simulation associated with a kind of nonlinear turbulence model is found to be an economic and robust numerical approach for different kinds of cavitating flows including cloud cavitation, tip cavitation and tip leakage cavitation. To predict the fluctuations of pressure and velocity, large eddy simulation(LES) and detached eddy simulation(DES) are two effective approaches. Finally, a few open questions are proposed for future research.