基于BOF(Bag of features)图像检索算法对电气设备图像进行分类,首先,通过加速鲁棒特征(SURF)算法寻找特征点位置,构造高维特征描述算子对特征进行描述和统计。然后,利用K-means聚类算法处理特征描述算子,得到独立的视觉词汇并汇总为特...基于BOF(Bag of features)图像检索算法对电气设备图像进行分类,首先,通过加速鲁棒特征(SURF)算法寻找特征点位置,构造高维特征描述算子对特征进行描述和统计。然后,利用K-means聚类算法处理特征描述算子,得到独立的视觉词汇并汇总为特定数目的码书。将码书中的特征描述算子进行量化和加权统计,用特征向量直方图表示整个图像。最后,用训练集图像的高维特征向量进行机器学习,对未知图像进行快速准确分类。将自然光条件下拍摄的电气设备图像和电气设备工作状态下的红外图像作为两个实验样本集进行分类测试,结果表明,该算法可对不同图像集实现快速准确分类,准确率可达95.59%。展开更多
文摘基于BOF(Bag of features)图像检索算法对电气设备图像进行分类,首先,通过加速鲁棒特征(SURF)算法寻找特征点位置,构造高维特征描述算子对特征进行描述和统计。然后,利用K-means聚类算法处理特征描述算子,得到独立的视觉词汇并汇总为特定数目的码书。将码书中的特征描述算子进行量化和加权统计,用特征向量直方图表示整个图像。最后,用训练集图像的高维特征向量进行机器学习,对未知图像进行快速准确分类。将自然光条件下拍摄的电气设备图像和电气设备工作状态下的红外图像作为两个实验样本集进行分类测试,结果表明,该算法可对不同图像集实现快速准确分类,准确率可达95.59%。