期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于高斯拟合的高光谱影像配准算法 被引量:4
1
作者 高雅 周佳霖 +2 位作者 侯雪 王晓飞 王霄衣 《红外与激光工程》 EI CSCD 北大核心 2016年第A02期126-131,共6页
传统的基于区域的配准方法是搜索配准控制点在离散的图像坐标点上进行的,从而限制了配准控制点定位精度这一问题,所以文中提出了一种基于高斯拟合的高光谱影像配准算法。与传统基于区域的配准方法类似,该方法是利用图像灰度信息,建立两... 传统的基于区域的配准方法是搜索配准控制点在离散的图像坐标点上进行的,从而限制了配准控制点定位精度这一问题,所以文中提出了一种基于高斯拟合的高光谱影像配准算法。与传统基于区域的配准方法类似,该方法是利用图像灰度信息,建立两幅图像之间的相似性度量,搜索使相似性度量值最大或最小的点作为配准控制点,但与传统方法不同之处在于,在搜索过程中,并不是直接寻找极值点作为配准控制点,而是通过在搜索过程中,首先生成相似度矩阵,利用极值点附近的值求出高斯拟合函数系数,利用高斯函数的极值点作为配准控制点。在对多组Hyperion高光谱影像进行配准的实验中,精度均优于传统方法,达到了亚像素级,满足后续的融合、变化检测等需要。 展开更多
关键词 遥感 高光谱影像 配准 高斯拟合
下载PDF
基于空间上下文单类分类器的目标检测算法 被引量:1
2
作者 王晓飞 王霄衣 +2 位作者 史翔宇 阎秋静 陈向南 《红外与激光工程》 EI CSCD 北大核心 2015年第B12期236-240,共5页
为了实现对高光谱图像中的目标自动检测,提出了一种基于空间上下文单类分类器的目标检测算法。对所采用的空间与光谱结合的特征、SVDD分类器原理、算法流程等进行研究。首先分析了支持向量数据描述(SVDD,support vector data descripti... 为了实现对高光谱图像中的目标自动检测,提出了一种基于空间上下文单类分类器的目标检测算法。对所采用的空间与光谱结合的特征、SVDD分类器原理、算法流程等进行研究。首先分析了支持向量数据描述(SVDD,support vector data description)的单类分类原理。接着,结合高光谱图像特点,介绍了如何利用空间上下文信息和光谱特征作为SVDD分类器输入特征。然后,在分析比较空间光谱结合单类分类器性能的基础上,说明了采用该算法的原理。最后,给出了该算法的具体实现方法。实验结果表明:该方法优于常规的直接利用光谱信息的CEM等算法,在AVIRIS成像的某国外海军基地数据中,检测飞机目标的精度达到了90%以上。基本满足目标检测的稳定可靠、低虚警率、高识别率等要求。 展开更多
关键词 高光谱图像 目标检测 单类分类 支持向量数据描述
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部