针对多分量线性调频(linear frequency modulation,LFM)雷达信号检测和参数估计精度低、计算速度慢等问题,提出了一种基于小波变换的切割聚类拟合参数估计的算法。该方法首先通过小波变换得到信号的三维时频分布图,其次采用等高线截取...针对多分量线性调频(linear frequency modulation,LFM)雷达信号检测和参数估计精度低、计算速度慢等问题,提出了一种基于小波变换的切割聚类拟合参数估计的算法。该方法首先通过小波变换得到信号的三维时频分布图,其次采用等高线截取提取出小波脊线,再找出脊线的交点,以交点为界对小波脊线图进行切割,利用模糊C均值聚类完成各LFM分量脊线的聚类,最后分别对每段脊线进行拟合加权,从而估计出多分量LFM信号参数。仿真结果表明,与基于Hough变换检测直线方法相比,不仅在计算复杂度以及参数估计的准确度上都有较大的提升,而且当LFM信号分量达到4个以上亦有较准确的检测精度。展开更多
文摘针对多分量线性调频(linear frequency modulation,LFM)雷达信号检测和参数估计精度低、计算速度慢等问题,提出了一种基于小波变换的切割聚类拟合参数估计的算法。该方法首先通过小波变换得到信号的三维时频分布图,其次采用等高线截取提取出小波脊线,再找出脊线的交点,以交点为界对小波脊线图进行切割,利用模糊C均值聚类完成各LFM分量脊线的聚类,最后分别对每段脊线进行拟合加权,从而估计出多分量LFM信号参数。仿真结果表明,与基于Hough变换检测直线方法相比,不仅在计算复杂度以及参数估计的准确度上都有较大的提升,而且当LFM信号分量达到4个以上亦有较准确的检测精度。