期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度神经网络的在线协作学习交互文本分类方法 被引量:16
1
作者 甄园宜 郑兰琴 《现代远程教育研究》 CSSCI 北大核心 2020年第3期104-112,共9页
有效的在线协作学习可显著改善在线教学质量,而对在线协作学习过程的实时分析、监控和干预是促进协作学习行为有效发生的关键,这有赖于对在线协作学习交互文本的精准分类。为避免人工编码和传统机器学习方法分类效果欠佳的不足,采用基... 有效的在线协作学习可显著改善在线教学质量,而对在线协作学习过程的实时分析、监控和干预是促进协作学习行为有效发生的关键,这有赖于对在线协作学习交互文本的精准分类。为避免人工编码和传统机器学习方法分类效果欠佳的不足,采用基于深度神经网络的卷积神经网络(CNN)、长短时记忆(LSTM)、双向长短时记忆(Bi-LSTM)等模型构建面向在线协作学习交互文本的分类模型,以Word2Vec作为词向量,提出了包含数据收集整理、文本标签标注、数据预处理、词嵌入、数据采样、模型训练、模型调参和模型评价等步骤的在线协作学习交互文本自动分类方法。以知识语义类、调节类、情感类、问题类和无关信息类等作为交互文本的类别划分,对51组大学生所产生的16047条在线协作学习交互文本进行分类后发现:Bi-LSTM模型的分类效果最好,其整体准确率为77.42%;各文本分类模型在问题类、无关信息类交互文本上的准确率较低;CNN模型和LSTM模型在问题类交互文本上的分类效果更佳。该方法在面向在线协作学习的知识掌握度评估、学习活动维持、消极学习情绪干预、学习预警与提示等方面具有较高的应用价值。 展开更多
关键词 在线协作学习 深度学习 深度神经网络 交互文本 文本分类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部