采用电场压力激活辅助合成工艺(Field activated and pressure assisted synthesis process (FAPAS))制备铜基石墨烯复合材料,研究不同的石墨烯含量对铜基体材料的微观结构和性能的影响机理。结果表明,石墨烯的添加能提高材料的位错密...采用电场压力激活辅助合成工艺(Field activated and pressure assisted synthesis process (FAPAS))制备铜基石墨烯复合材料,研究不同的石墨烯含量对铜基体材料的微观结构和性能的影响机理。结果表明,石墨烯的添加能提高材料的位错密度、阻止位错在晶界移动,硬度提升17.6%;由于石墨烯添加量少,对铜基复合材料的位错密度和晶粒尺寸影响有限,片状的石墨烯能有效地弥补制备产生的缺陷,使材料的热导率和电导率分别提升2.9%和4.4%;石墨烯的添加使腐蚀电池两极间的电位差减小,降低了铜离子在氧化膜中的扩散能力,使复合材料的阻抗提升5.3%,腐蚀电流密度下降28.2%,有效地提升了铜基复合材料的耐腐蚀性能。铜基石墨烯复合材料的石墨烯最佳添加量为0.5 wt.%。展开更多
Experiments on the thermal decomposition of CuSe were carried out by using a thermogravimetric analyzer(TGA)at different heating rates.The kinetic parameters and mechanisms were discussed based on model-free and model...Experiments on the thermal decomposition of CuSe were carried out by using a thermogravimetric analyzer(TGA)at different heating rates.The kinetic parameters and mechanisms were discussed based on model-free and model-based analyses.The decomposition rate and decomposition behavior of CuSe were investigated by using a vacuum thermogravimetric furnace.The results showed that the R3 model was identified as the most probable mechanism function under the present experimental conditions.The average values of activation energy and the pre-exponential factor were 12.344 J/mol and 0.152 s^(−1),respectively.The actual decomposition rate of CuSe was found to be 0.0030 g/(cm^(2)·min).展开更多
文摘采用电场压力激活辅助合成工艺(Field activated and pressure assisted synthesis process (FAPAS))制备铜基石墨烯复合材料,研究不同的石墨烯含量对铜基体材料的微观结构和性能的影响机理。结果表明,石墨烯的添加能提高材料的位错密度、阻止位错在晶界移动,硬度提升17.6%;由于石墨烯添加量少,对铜基复合材料的位错密度和晶粒尺寸影响有限,片状的石墨烯能有效地弥补制备产生的缺陷,使材料的热导率和电导率分别提升2.9%和4.4%;石墨烯的添加使腐蚀电池两极间的电位差减小,降低了铜离子在氧化膜中的扩散能力,使复合材料的阻抗提升5.3%,腐蚀电流密度下降28.2%,有效地提升了铜基复合材料的耐腐蚀性能。铜基石墨烯复合材料的石墨烯最佳添加量为0.5 wt.%。
基金supported by the Basic Research Plan of Yunnan Province,China(No.2019FA020)the Yunling Scholars of Yunnan Province,China(No.KKRC201952012)the Leading Talents of Industrial Technology in Ten Thousand Talents Plan of Yunnan Province,China,and the Scientist Studio of Yunnan Province,China.
文摘Experiments on the thermal decomposition of CuSe were carried out by using a thermogravimetric analyzer(TGA)at different heating rates.The kinetic parameters and mechanisms were discussed based on model-free and model-based analyses.The decomposition rate and decomposition behavior of CuSe were investigated by using a vacuum thermogravimetric furnace.The results showed that the R3 model was identified as the most probable mechanism function under the present experimental conditions.The average values of activation energy and the pre-exponential factor were 12.344 J/mol and 0.152 s^(−1),respectively.The actual decomposition rate of CuSe was found to be 0.0030 g/(cm^(2)·min).