期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于最近邻的随机非线性降维 被引量:5
1
作者 田守财 孙喜利 路永钢 《计算机应用》 CSCD 北大核心 2016年第2期377-381,共5页
针对线性降维技术应用于具有非线性结构的数据时无法得到令人满意的结果的问题,提出一种新的着重于保持高维空间局部最近邻信息的非线性随机降维算法(NNSE)。该算法首先在高维空间中通过计算样本点之间的欧氏距离找出每个样本点的最近邻... 针对线性降维技术应用于具有非线性结构的数据时无法得到令人满意的结果的问题,提出一种新的着重于保持高维空间局部最近邻信息的非线性随机降维算法(NNSE)。该算法首先在高维空间中通过计算样本点之间的欧氏距离找出每个样本点的最近邻点,接着在低维空间中产生一个随机的初始分布;然后通过将低维空间中的样本点不断向其最近邻点的平均位置移动,直到产生稳定的低维嵌入结果。与一种先进的非线性随机降维算法——t分布随机邻域嵌入(t-SNE)相比,NNSE算法得到的低维结果在可视化方面与t-SNE算法相差不大,但通过比较两者的量化指标可以发现,NNSE算法在保持最近邻信息方面上明显优于t-SNE算法。 展开更多
关键词 降维 线性方法 非线性方法 最近邻 随机方法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部