期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度学习的SSL VPN加密流量的分类识别
被引量:
2
1
作者
刘亮
由健林
张磊
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2023年第6期99-106,共8页
随着虚拟专用网技术的广泛使用,VPN加密流量的分类识别对于网络安全管理的重要性愈发明显,而传统流量分类技术在提取特征和关键协议字段时效率较低.因此,本文提出一种基于卷积神经网络的深度学习模型,用以实现SSL VPN加密流量的分类识别...
随着虚拟专用网技术的广泛使用,VPN加密流量的分类识别对于网络安全管理的重要性愈发明显,而传统流量分类技术在提取特征和关键协议字段时效率较低.因此,本文提出一种基于卷积神经网络的深度学习模型,用以实现SSL VPN加密流量的分类识别,并减少特征工程中的人力成本.首先,将流量区分为VPN加密流量和非VPN加密流量,并且确定出这两类流量所属的服务类型;然后对所有流量进行分类,识别出产生流量的应用类型.考虑到网络流量中存在的时序关系,采用一维卷积神经网络作为深度学习的模型,通过构建Pytorch的实验环境,采用ISCX2016数据集,实现对VPN加密流量的分类任务.通过参数优化,除数据量较小的数据类型外,应用识别的平均F1-score为91.73%,流量识别的平均F1-score为91.13%.实验结果表明,基于一维卷积神经网络的深度学习方法对于识别SSL VPN流量是可行和有效的.
展开更多
关键词
加密流量分类
深度学习
一维卷积
SSL
VPN
下载PDF
职称材料
题名
基于深度学习的SSL VPN加密流量的分类识别
被引量:
2
1
作者
刘亮
由健林
张磊
机构
四川大学网络空间安全学院
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2023年第6期99-106,共8页
基金
四川省科技计划项目(2021YFG0159,2022YFG0171)。
文摘
随着虚拟专用网技术的广泛使用,VPN加密流量的分类识别对于网络安全管理的重要性愈发明显,而传统流量分类技术在提取特征和关键协议字段时效率较低.因此,本文提出一种基于卷积神经网络的深度学习模型,用以实现SSL VPN加密流量的分类识别,并减少特征工程中的人力成本.首先,将流量区分为VPN加密流量和非VPN加密流量,并且确定出这两类流量所属的服务类型;然后对所有流量进行分类,识别出产生流量的应用类型.考虑到网络流量中存在的时序关系,采用一维卷积神经网络作为深度学习的模型,通过构建Pytorch的实验环境,采用ISCX2016数据集,实现对VPN加密流量的分类任务.通过参数优化,除数据量较小的数据类型外,应用识别的平均F1-score为91.73%,流量识别的平均F1-score为91.13%.实验结果表明,基于一维卷积神经网络的深度学习方法对于识别SSL VPN流量是可行和有效的.
关键词
加密流量分类
深度学习
一维卷积
SSL
VPN
Keywords
Encrypted traffic classification
Deep learning
One-dimensional convolution
SSL VPN
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度学习的SSL VPN加密流量的分类识别
刘亮
由健林
张磊
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2023
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部