期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
“郑水”搅拌楼(站):为引汉济渭工程生产优质混凝土
1
作者 申朝鹏 《中国水利》 2017年第20期66-67,共2页
巍巍秦岭中,陕西省有史以来规模最大的水利工程——引汉济渭工程正在加紧建设。由郑州水工机械有限公司设计生产的4台“郑水(ZS)”牌混凝土搅拌设备在工程施工工地上正常运转,为施工提供所需的各种优质水工碾压、预冷和常态混凝土,保... 巍巍秦岭中,陕西省有史以来规模最大的水利工程——引汉济渭工程正在加紧建设。由郑州水工机械有限公司设计生产的4台“郑水(ZS)”牌混凝土搅拌设备在工程施工工地上正常运转,为施工提供所需的各种优质水工碾压、预冷和常态混凝土,保障工程建设顺利进行。引汉济渭工程主要由三河口水利枢纽、黄金峡水利枢纽和秦岭隧道三大部分组成。其中,两大水源工程之一——三河口水利枢纽,是引汉济渭工程的中枢调蓄“水龙头”。 展开更多
关键词 混凝土搅拌设备 水利工程 优质 生产 搅拌楼 水利枢纽 工程施工 水工机械
下载PDF
大尺度跨境流域径流预测的迁移学习框架--敏感性分析及在数据稀缺流域的适用性
2
作者 马凯 申朝鹏 +1 位作者 许紫月 何大明 《Journal of Geographical Sciences》 SCIE CSCD 2024年第5期963-984,共22页
The imbalance in global streamflow gauge distribution and regional data scarcity,especially in large transboundary basins,challenge regional water resource management.Effectively utilizing these limited data to constr... The imbalance in global streamflow gauge distribution and regional data scarcity,especially in large transboundary basins,challenge regional water resource management.Effectively utilizing these limited data to construct reliable models is of crucial practical importance.This study employs a transfer learning(TL)framework to simulate daily streamflow in the Dulong-lrrawaddy River Basin(DIRB),a less-studied transboundary basin shared by Myanmar,China,and India.Our results show that TL significantly improves streamflow predictions:the optimal TL model achieves an average Nash-Sutcliffe efficiency of 0.872,showing a marked improvement in the Hkamti sub-basin.Despite data scarcity,TL achieves a mean NSE of 0.817,surpassing the 0.655 of the process-based model MIKE SHE.Additionally,our study reveals the importance of source model selection in TL,as different parts of the flow are affected by the diversity and similarity of data in the source model.Deep learning models,particularly TL,exhibit complex sensitivities to meteorological inputs,more accurately capturing non-linear relationships among multiple variables than the process-based model.Integrated gradients(IG)analysis furtherillustrates TL's ability to capture spatial het-erogeneity in upstream and downstream sub-basins and its adeptness in characterizing different flow regimes.This study underscores the potential of TL in enhancing the understanding of hydrological processes in large-scale catchments and highlights its value for water resource management in transboundary basins under data scarcity. 展开更多
关键词 transfer learning streamflow prediction deep learning model sensitivity data scarcity international river
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部