[目的/意义]对人工智能领域科研团队进行识别,并基于多个维度的指标提取领军科研团队,旨在丰富科研团队识别的流程与方法,为从科研团队视角分析人工智能领域脉络、前沿和主题提供依据。[方法/过程]以Web of Science为数据来源,采集2009-...[目的/意义]对人工智能领域科研团队进行识别,并基于多个维度的指标提取领军科研团队,旨在丰富科研团队识别的流程与方法,为从科研团队视角分析人工智能领域脉络、前沿和主题提供依据。[方法/过程]以Web of Science为数据来源,采集2009-2018年间人工智能学科领域所有科技论文的数据,通过算法设计与人工核查进行数据清洗;基于分数计数法构建全局合著网络,并利用社区探测算法动态调参、识别科研团队;进而基于多维度的指标提取出领军团队,并加以比较分析。[结果/结论]从实践出发构造人工智能科技论文数据清洗的规则;构建基于合著关系识别人工智能科研团队的流程体系;提出通过消除边缘结点进行合著网络筛选,进而利用已知团队作为参考进行参数调整的思路;较为系统和准确地识别出全球人工智能科研团队,并基于发文量、被引量、h指数、中介中心度、接近中心度和加权点度中心度6个维度的指标提取出领军科研团队,同时,给出结合论文数据和实证调研对每个领军团队的示例性分析。展开更多
文摘[目的/意义]对人工智能领域科研团队进行识别,并基于多个维度的指标提取领军科研团队,旨在丰富科研团队识别的流程与方法,为从科研团队视角分析人工智能领域脉络、前沿和主题提供依据。[方法/过程]以Web of Science为数据来源,采集2009-2018年间人工智能学科领域所有科技论文的数据,通过算法设计与人工核查进行数据清洗;基于分数计数法构建全局合著网络,并利用社区探测算法动态调参、识别科研团队;进而基于多维度的指标提取出领军团队,并加以比较分析。[结果/结论]从实践出发构造人工智能科技论文数据清洗的规则;构建基于合著关系识别人工智能科研团队的流程体系;提出通过消除边缘结点进行合著网络筛选,进而利用已知团队作为参考进行参数调整的思路;较为系统和准确地识别出全球人工智能科研团队,并基于发文量、被引量、h指数、中介中心度、接近中心度和加权点度中心度6个维度的指标提取出领军科研团队,同时,给出结合论文数据和实证调研对每个领军团队的示例性分析。