Copper selenide (CurSe) has great potential as counter electrode for quantum dots sensitized solar cell (QDSSC) due to its excellent electrocatalytic activity and lower charge transfer resistance. A novel ion exch...Copper selenide (CurSe) has great potential as counter electrode for quantum dots sensitized solar cell (QDSSC) due to its excellent electrocatalytic activity and lower charge transfer resistance. A novel ion exchange method has been utilized to fabricate Cu3Se2 nanosheets array counter electrode. CdS layer was first deposited by sputtering and used as a template to grow compact and uni- form Cu3Se2 film in a typical chemical bath. The morphology and thickness of the Cu3Se2 nanosheets were controlled by the deposition time. The final products (2h-Cu3Se2) showed significantly improved electrochemical catalytic activity and carrier transport property, leading to a much increased power conversion efficiency (4.01%) when compared with the CuS counter electrode CdS/CdSe QDSSC (3.21%).展开更多
基金supported by the National Natural Science Foundation of China (51374029 and 51611130063)Fundamental Research Funds for the Central Universities (FRF-BD-16-012A)111 Project (B17003)
文摘Copper selenide (CurSe) has great potential as counter electrode for quantum dots sensitized solar cell (QDSSC) due to its excellent electrocatalytic activity and lower charge transfer resistance. A novel ion exchange method has been utilized to fabricate Cu3Se2 nanosheets array counter electrode. CdS layer was first deposited by sputtering and used as a template to grow compact and uni- form Cu3Se2 film in a typical chemical bath. The morphology and thickness of the Cu3Se2 nanosheets were controlled by the deposition time. The final products (2h-Cu3Se2) showed significantly improved electrochemical catalytic activity and carrier transport property, leading to a much increased power conversion efficiency (4.01%) when compared with the CuS counter electrode CdS/CdSe QDSSC (3.21%).