期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进的半监督聚类的不平衡分类算法 被引量:4
1
作者 陆宇 赵凌云 +1 位作者 白斌雯 姜震 《计算机应用》 CSCD 北大核心 2022年第12期3750-3755,共6页
不平衡分类的相关算法是机器学习领域的研究热点之一,其中的过采样通过重复抽取或者人工合成来增加少数类样本,以实现数据集的再平衡。然而当前的过采样方法大部分是基于原有的样本分布进行的,难以揭示更多的数据集分布特征。为了解决... 不平衡分类的相关算法是机器学习领域的研究热点之一,其中的过采样通过重复抽取或者人工合成来增加少数类样本,以实现数据集的再平衡。然而当前的过采样方法大部分是基于原有的样本分布进行的,难以揭示更多的数据集分布特征。为了解决以上问题,首先,提出一种改进的半监督聚类算法来挖掘数据的分布特征;其次,基于半监督聚类的结果,在属于少数类的簇中选择置信度高的无标签数据(伪标签样本)加入原始训练集,这样做除了实现数据集的再平衡外,还可以利用半监督聚类获得的分布特征来辅助不平衡分类;最后,融合半监督聚类和分类的结果来预测最终的类别标签,从而进一步提高算法的不平衡分类性能。选择G-mean和曲线下面积(AUC)作为评价指标,将所提算法与TU、CDSMOTE等7个基于过采样或欠采样的不平衡分类算法在10个公开数据集上进行了对比分析。实验结果表明,与TU、CDSMOTE相比,所提算法在AUC指标上分别平均提高了6.7%和3.9%,在G-mean指标上分别平均提高了7.6%和2.1%,且在两个评价指标上相较于所有对比算法都取得了最高的平均结果。可见所提算法能够有效地提高不平衡分类性能。 展开更多
关键词 不平衡分类 半监督聚类 伪标签样本 过采样 融合
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部