为了探究不同制酒车间空气微生物群落的功能多样性差异,采用Biolog-ECO微平板技术分析了不同空气样品的微生物群落碳代谢特征。结果表明,不同微生物样品平均颜色变化率(average well color development,AWCD)均在培养144h后达到稳定,并...为了探究不同制酒车间空气微生物群落的功能多样性差异,采用Biolog-ECO微平板技术分析了不同空气样品的微生物群落碳代谢特征。结果表明,不同微生物样品平均颜色变化率(average well color development,AWCD)均在培养144h后达到稳定,并且5个车间的AWCD值即对单一碳源的利用能力存在显著差异,老车间空气微生物的碳代谢能力和4类多样性指数均显著高于新车间。5个车间空气微生物对6类碳源的利用程度存在差异,对碳水化合物、氨基酸类、羧酸类、多聚物类和胺类碳源的利用率显著高于酚酸类。微生物代谢特征主成分分析结果表明,主成分1(PC1)贡献度为72.7%,主成分2(PC2)贡献度为14.2%,其中生产工艺相同的车间微生物群落差异较小,投产时间相同的车间微生物群落差异较小。分异代谢差异的主要碳源是与PC1有较高正相关性的α-D-乳糖、β-甲基-D-葡萄糖苷、葡萄糖-1-磷酸盐、肝糖等15种碳源,包括有9种碳水化合物、3种羧酸、2种多聚物和1种氨基酸。展开更多
文摘为了探究不同制酒车间空气微生物群落的功能多样性差异,采用Biolog-ECO微平板技术分析了不同空气样品的微生物群落碳代谢特征。结果表明,不同微生物样品平均颜色变化率(average well color development,AWCD)均在培养144h后达到稳定,并且5个车间的AWCD值即对单一碳源的利用能力存在显著差异,老车间空气微生物的碳代谢能力和4类多样性指数均显著高于新车间。5个车间空气微生物对6类碳源的利用程度存在差异,对碳水化合物、氨基酸类、羧酸类、多聚物类和胺类碳源的利用率显著高于酚酸类。微生物代谢特征主成分分析结果表明,主成分1(PC1)贡献度为72.7%,主成分2(PC2)贡献度为14.2%,其中生产工艺相同的车间微生物群落差异较小,投产时间相同的车间微生物群落差异较小。分异代谢差异的主要碳源是与PC1有较高正相关性的α-D-乳糖、β-甲基-D-葡萄糖苷、葡萄糖-1-磷酸盐、肝糖等15种碳源,包括有9种碳水化合物、3种羧酸、2种多聚物和1种氨基酸。