期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
嵌入傅里叶神经算子的卷积自编码声波速度反演方法
1
作者 李谌 赵海霞 +1 位作者 白钊蔚 郝禹帆 《煤田地质与勘探》 EI CAS CSCD 北大核心 2024年第11期132-140,共9页
【背景】地震波反演是利用地震波的到达时间、振幅和波形等信息获取地下介质构造、岩性和物性特征的有效手段。基于波动方程的地震反演方法利用正演模拟技术不断迭代更新模型参数,这通常需要大量的数值模拟和优化计算,耗费大量的计算资... 【背景】地震波反演是利用地震波的到达时间、振幅和波形等信息获取地下介质构造、岩性和物性特征的有效手段。基于波动方程的地震反演方法利用正演模拟技术不断迭代更新模型参数,这通常需要大量的数值模拟和优化计算,耗费大量的计算资源和时间。近年来,以傅里叶神经算子(Fourier neural operator,FNO)为代表的神经算子学习引起了广泛关注。然而,在复杂介质地震波反演中,原始FNO结构无法有效学习地质结构变化剧烈的波场信息,导致其反演结果准确性不高。【目的和方法】为了提升FNO在复杂地质模型下学习地震波场信息的准确性和泛化性能,提出了一种新颖的声波速度反演方法-卷积自编码傅里叶神经算子(CAE-FNO)。CAE-FNO利用编码器进行特征提取,并基于FNO进行高效训练,以更好地捕捉波场的细微特征并提高预测精度。CAEFNO在网络训练过程中逐层减小傅立叶模的规模,从而有效减少网络参数的数量,同时增强网络的泛化能力。【结果和结论】通过对均匀、非均匀、层状和Marmousi2等模型进行数值实验验证,结果表明:CAE-FNO的反演精度优于FNO及其变体UFNO和UNO。在均匀介质模型中,CAE-FNO的速度反演结果相对误差为1.3%,而UFNO与UNO的反演结果相对误差分别为1.7%、2.3%,FNO的误差高达10.1%。在非均匀模型中,CAE-FNO准确反演地质结构和速度变化位置,而UFNO和UNO在速度变化剧烈区域的误差相对较大。层状模型中,CAE-FNO能够清晰区分不同层间的微小速度变化,而FNO无法明显区分。在Marmousi2模型的平滑区域和突变区域,CAE-FNO较UFNO和UNO更能准确捕捉不规则的速度变化界面,FNO则无法有效处理这些区域的速度突变与细节变化。CAE-FNO通过更低的损失函数值和更高的反演精度,展示了其在复杂介质反演中的优势,为地震反演技术提供新的研究思路。 展开更多
关键词 地震波反演 傅里叶神经算子 卷积自编码器 深度学习 数据驱动
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部