Staring from a new spectral problem,a hierarchy of the generalized Kaup-Newell soliton equations is derived.By employing the trace identity their Hamiltonian structures are also generated.Then,the generalized Kaup-New...Staring from a new spectral problem,a hierarchy of the generalized Kaup-Newell soliton equations is derived.By employing the trace identity their Hamiltonian structures are also generated.Then,the generalized Kaup-Newell soliton equations are decomposed into two systems of ordinary differential equations.The Abel-Jacobi coordinates are introduced to straighten the flows,from which the algebro-geometric solutions of the generalized KaupNewell soliton equations are obtained in terms of the Riemann theta functions.展开更多
基金Supported by the Natural Science Foundation of China(Grant Nos.11547175,11271008)Supported by the Science and Technology Department of Henan Province(No.182102310978)Supported by the Aid Project for the Mainstay Young Teachers in Henan Provincial Institutions of Higher Education of China(Grant Nos.2017GGJS145,2014GGJS-195)
文摘Staring from a new spectral problem,a hierarchy of the generalized Kaup-Newell soliton equations is derived.By employing the trace identity their Hamiltonian structures are also generated.Then,the generalized Kaup-Newell soliton equations are decomposed into two systems of ordinary differential equations.The Abel-Jacobi coordinates are introduced to straighten the flows,from which the algebro-geometric solutions of the generalized KaupNewell soliton equations are obtained in terms of the Riemann theta functions.