阿姆河三角洲作为典型干旱区,干旱胁迫和次生的盐胁迫决定了本地区生态环境的复杂性和独特性,给遥感地表覆盖制图带来一定的困难。在土地利用/覆盖(LULC)遥感图像分类任务中,数量大、质量高、成本低的样本和速度快、性能稳定的分类器是...阿姆河三角洲作为典型干旱区,干旱胁迫和次生的盐胁迫决定了本地区生态环境的复杂性和独特性,给遥感地表覆盖制图带来一定的困难。在土地利用/覆盖(LULC)遥感图像分类任务中,数量大、质量高、成本低的样本和速度快、性能稳定的分类器是高效实现高精度分类的关键。在一些偏远地区开展土地利用/地表覆盖遥感图像分类依然面临着标记样本空间上稀疏、时间上不连续甚至是缺失,人工收集成本高等问题。为此,结合最优树集成和样本迁移的思想,构建了一种高效的地表覆盖自动更新的新方法。该方法通过变化检测在历史产品上的同期影像上进行样本标签的标记,并将过去的地表覆盖类型标签转移到同源目标影像上,使用最优树集成(Ensemble of optimum trees,OTE)完成地表覆盖自动分类。根据阿姆河三角洲地区地表覆盖分类试验结果,表明该方法可以提取有效的地表覆盖标签,并能较高精度发实现土地利用/地表覆盖的自动分类更新。展开更多
文摘阿姆河三角洲作为典型干旱区,干旱胁迫和次生的盐胁迫决定了本地区生态环境的复杂性和独特性,给遥感地表覆盖制图带来一定的困难。在土地利用/覆盖(LULC)遥感图像分类任务中,数量大、质量高、成本低的样本和速度快、性能稳定的分类器是高效实现高精度分类的关键。在一些偏远地区开展土地利用/地表覆盖遥感图像分类依然面临着标记样本空间上稀疏、时间上不连续甚至是缺失,人工收集成本高等问题。为此,结合最优树集成和样本迁移的思想,构建了一种高效的地表覆盖自动更新的新方法。该方法通过变化检测在历史产品上的同期影像上进行样本标签的标记,并将过去的地表覆盖类型标签转移到同源目标影像上,使用最优树集成(Ensemble of optimum trees,OTE)完成地表覆盖自动分类。根据阿姆河三角洲地区地表覆盖分类试验结果,表明该方法可以提取有效的地表覆盖标签,并能较高精度发实现土地利用/地表覆盖的自动分类更新。