期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Swin Transformer生成对抗网络的图像生成算法
被引量:
3
1
作者
王军
高放
+1 位作者
省海先
张宇
《小型微型计算机系统》
CSCD
北大核心
2024年第1期241-248,共8页
针对图像生成算法中生成对抗网络训练效率低且不稳定的问题,本文提出了一种改进生成对抗网络的图像生成算法(STGAN),该算法首先在判别器中引入Swin Transformer机制,来增强网络的判别能力;其次改进了生成器,使用自注意力代替卷积神经并...
针对图像生成算法中生成对抗网络训练效率低且不稳定的问题,本文提出了一种改进生成对抗网络的图像生成算法(STGAN),该算法首先在判别器中引入Swin Transformer机制,来增强网络的判别能力;其次改进了生成器,使用自注意力代替卷积神经并且加入谱范数规范化,来达到平衡生成器和判别器的效果;最后使用Wasserstein距离作为损失函数,以提高网络的训练稳定性.实验数据表明,在CelebA和LSUN两种不同数据集上STGAN比自注意力生成对抗网络所生成图像的FID值分别降低了2.5266和5.4476,IS值分别提高了0.0941和0.0343.从实验结果可以看出,STGAN模型生成的图片具有非常高的自然度和逼真度,有效地提升了生成图像的质量和真实性.
展开更多
关键词
生成对抗网络
Swin
Transformer
自注意力
图像生成
下载PDF
职称材料
题名
基于Swin Transformer生成对抗网络的图像生成算法
被引量:
3
1
作者
王军
高放
省海先
张宇
机构
沈阳化工大学计算机科学与技术学院
出处
《小型微型计算机系统》
CSCD
北大核心
2024年第1期241-248,共8页
基金
辽宁省“百千万人才工程”项目(辽人社[2019]45号)资助
辽宁省自然基金项目(2022-MS-291)资助
辽宁省教育厅科研项目(LJ2020024,2022-wj)资助.
文摘
针对图像生成算法中生成对抗网络训练效率低且不稳定的问题,本文提出了一种改进生成对抗网络的图像生成算法(STGAN),该算法首先在判别器中引入Swin Transformer机制,来增强网络的判别能力;其次改进了生成器,使用自注意力代替卷积神经并且加入谱范数规范化,来达到平衡生成器和判别器的效果;最后使用Wasserstein距离作为损失函数,以提高网络的训练稳定性.实验数据表明,在CelebA和LSUN两种不同数据集上STGAN比自注意力生成对抗网络所生成图像的FID值分别降低了2.5266和5.4476,IS值分别提高了0.0941和0.0343.从实验结果可以看出,STGAN模型生成的图片具有非常高的自然度和逼真度,有效地提升了生成图像的质量和真实性.
关键词
生成对抗网络
Swin
Transformer
自注意力
图像生成
Keywords
generate adversarial networks
Swin Transformer
self-attention
image generation
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Swin Transformer生成对抗网络的图像生成算法
王军
高放
省海先
张宇
《小型微型计算机系统》
CSCD
北大核心
2024
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部