The demand for high-data-rate underwater acoustic communications(UACs)in marine development is increasing;however,severe multipaths make demodulation a challenge.The decision feedback equalizer(DFE)is one of the most ...The demand for high-data-rate underwater acoustic communications(UACs)in marine development is increasing;however,severe multipaths make demodulation a challenge.The decision feedback equalizer(DFE)is one of the most popular equalizers in UAC;however,it is not the optimal algorithm.Although maximum likelihood sequence estimation(MLSE)is the optimal algorithm,its complexity increases exponentially with the number of channel taps,making it challenging to apply to UAC.Therefore,this paper proposes a complexity-reduced MLSE to improve the bit error rate(BER)performance in multipath channels.In the proposed algorithm,the original channel is first shortened using a channel-shortening method,and several dominant channel taps are selected for MLSE.Subsequently,sphere decoding(SD)is performed in the following MLSE.Iterations are applied to eliminate inter-symbol interference caused by weak channel taps.The simulation and sea experiment demonstrate the superiority of the proposed algorithm.The simulation results show that channel shortening combined with SD can drastically reduce computational complexity,and iterative SD performs better than DFE based on recursive least squares(RLS-DFE),DFE based on improved proportionate normalized least mean squares(IPNLMS-DFE),and channel estimation-based DFE(CE-DFE).Moreover,the sea experimental results at Zhairuoshan Island in Zhoushan show that the proposed receiver scheme has improved BER performance over RLSDFE,IPNLMS-DFE,and CE-DFE.Compared with the RLS-DFE,the BER,after five iterations,is reduced from 0.0076 to 0.0037 in the 8–12 k Hz band and from 0.1516 to 0.1145 in the 13–17 k Hz band at a distance of 2000 m.Thus,the proposed algorithm makes it possible to apply MLSE in UAC in practical scenarios.展开更多
低频水声通信是实现远距离水下无线通信的一种重要方式,在海洋科考、环境监测及军事等领域应用广泛。流噪声是制约低频水声通信传输距离的重要因素之一。不同于以往对充油的拖曳线列阵声呐的流噪声研究,由于低频水声通信系统常用换能器...低频水声通信是实现远距离水下无线通信的一种重要方式,在海洋科考、环境监测及军事等领域应用广泛。流噪声是制约低频水声通信传输距离的重要因素之一。不同于以往对充油的拖曳线列阵声呐的流噪声研究,由于低频水声通信系统常用换能器和裸露水听器实现水下信号的发送和接收,本文以该系统中裸露水听器流噪声为研究对象,采用大涡模拟方法( Large Eddy Simulation, LES )和声学类比方法对水听器周围的流场、声场进行数值模拟计算分析,研究在不同外形参数、运动参数下的水听器周围的流噪声。分析对比结果表明裸露水听器周围的流噪声对低频水声通信存在影响,且流噪声声压级随着运动速度的增加而提高。本研究为提升远程低频水声通信性能提供了噪声方面的理论基础。展开更多
Filter bank multicarrier(FBMC)systems with offset quadrature amplitude modulation(OQAM)need long data blocks to achieve high spectral efficiency.However,the transmission of long data blocks in underwater acoustic(UWA)...Filter bank multicarrier(FBMC)systems with offset quadrature amplitude modulation(OQAM)need long data blocks to achieve high spectral efficiency.However,the transmission of long data blocks in underwater acoustic(UWA)communication systems often encounters the challenge of time-varying channels.This paper proposes a time-varying channel tracking method for short-range high-rate UWA FBMC-OQAM communication applications.First,a known preamble is used to initialize the channel estimation at the initial time of the signal block.Next,the estimated channel is applied to detect data symbols at several symbol periods.The detected data symbols are then reused as new pilots to estimate the next time channel.In the above steps,the unified transmission matrix model is extended to describe the time-varying channel input-output model in this paper and is used for symbol detection.Simulation results show that the channel tracking error can be reduced to less than−20 dB when the channel temporal coherence coefficient exceeds 0.75 within one block period of FBMC-OQAM signals.Compared with conventional known-pilot-based methods,the proposed method needs lower system overhead while exhibiting similar time-varying channel tracking performance.The sea trial results further proved the practicability of the proposed method.展开更多
The car-following behavior can be influenced by its driver’s backward-looking effect.Especially in traffic congestion,if vehicles adjust the headway by considering backward-looking effect,the stability of traffic flo...The car-following behavior can be influenced by its driver’s backward-looking effect.Especially in traffic congestion,if vehicles adjust the headway by considering backward-looking effect,the stability of traffic flow can be enhanced.A model of car-following behavior considering backward-looking effect was built using visual information as a stimulus.The critical stability conditions were derived by linear and nonlinear stability analyses.The results of parameter sensitivity analysis indicate that the stability of traffic flow was enhanced by considering the backward-looking effect.The spatiotemporal evolution of traffic flow of different truck ratios and varying degrees of backward-looking effect was determined by numerical simulation.This study lays a foundation for exploring the complex feature of car-following behavior and making the intelligent network vehicles control rules more consistent with human driver habits.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos. 62101489, 62171405 and 62225114.
文摘The demand for high-data-rate underwater acoustic communications(UACs)in marine development is increasing;however,severe multipaths make demodulation a challenge.The decision feedback equalizer(DFE)is one of the most popular equalizers in UAC;however,it is not the optimal algorithm.Although maximum likelihood sequence estimation(MLSE)is the optimal algorithm,its complexity increases exponentially with the number of channel taps,making it challenging to apply to UAC.Therefore,this paper proposes a complexity-reduced MLSE to improve the bit error rate(BER)performance in multipath channels.In the proposed algorithm,the original channel is first shortened using a channel-shortening method,and several dominant channel taps are selected for MLSE.Subsequently,sphere decoding(SD)is performed in the following MLSE.Iterations are applied to eliminate inter-symbol interference caused by weak channel taps.The simulation and sea experiment demonstrate the superiority of the proposed algorithm.The simulation results show that channel shortening combined with SD can drastically reduce computational complexity,and iterative SD performs better than DFE based on recursive least squares(RLS-DFE),DFE based on improved proportionate normalized least mean squares(IPNLMS-DFE),and channel estimation-based DFE(CE-DFE).Moreover,the sea experimental results at Zhairuoshan Island in Zhoushan show that the proposed receiver scheme has improved BER performance over RLSDFE,IPNLMS-DFE,and CE-DFE.Compared with the RLS-DFE,the BER,after five iterations,is reduced from 0.0076 to 0.0037 in the 8–12 k Hz band and from 0.1516 to 0.1145 in the 13–17 k Hz band at a distance of 2000 m.Thus,the proposed algorithm makes it possible to apply MLSE in UAC in practical scenarios.
文摘低频水声通信是实现远距离水下无线通信的一种重要方式,在海洋科考、环境监测及军事等领域应用广泛。流噪声是制约低频水声通信传输距离的重要因素之一。不同于以往对充油的拖曳线列阵声呐的流噪声研究,由于低频水声通信系统常用换能器和裸露水听器实现水下信号的发送和接收,本文以该系统中裸露水听器流噪声为研究对象,采用大涡模拟方法( Large Eddy Simulation, LES )和声学类比方法对水听器周围的流场、声场进行数值模拟计算分析,研究在不同外形参数、运动参数下的水听器周围的流噪声。分析对比结果表明裸露水听器周围的流噪声对低频水声通信存在影响,且流噪声声压级随着运动速度的增加而提高。本研究为提升远程低频水声通信性能提供了噪声方面的理论基础。
基金Supported by the National Natural Science Foundation of China under Grant Nos.62171405,62225114 and 62101489.
文摘Filter bank multicarrier(FBMC)systems with offset quadrature amplitude modulation(OQAM)need long data blocks to achieve high spectral efficiency.However,the transmission of long data blocks in underwater acoustic(UWA)communication systems often encounters the challenge of time-varying channels.This paper proposes a time-varying channel tracking method for short-range high-rate UWA FBMC-OQAM communication applications.First,a known preamble is used to initialize the channel estimation at the initial time of the signal block.Next,the estimated channel is applied to detect data symbols at several symbol periods.The detected data symbols are then reused as new pilots to estimate the next time channel.In the above steps,the unified transmission matrix model is extended to describe the time-varying channel input-output model in this paper and is used for symbol detection.Simulation results show that the channel tracking error can be reduced to less than−20 dB when the channel temporal coherence coefficient exceeds 0.75 within one block period of FBMC-OQAM signals.Compared with conventional known-pilot-based methods,the proposed method needs lower system overhead while exhibiting similar time-varying channel tracking performance.The sea trial results further proved the practicability of the proposed method.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFB1601000)the National Natural Science Foundation of China(Grant Nos.61773337,61773338,and 61722113)the Key Research and Development Program of Shandong Province,China(Grant No.2019TSLH0203).
文摘The car-following behavior can be influenced by its driver’s backward-looking effect.Especially in traffic congestion,if vehicles adjust the headway by considering backward-looking effect,the stability of traffic flow can be enhanced.A model of car-following behavior considering backward-looking effect was built using visual information as a stimulus.The critical stability conditions were derived by linear and nonlinear stability analyses.The results of parameter sensitivity analysis indicate that the stability of traffic flow was enhanced by considering the backward-looking effect.The spatiotemporal evolution of traffic flow of different truck ratios and varying degrees of backward-looking effect was determined by numerical simulation.This study lays a foundation for exploring the complex feature of car-following behavior and making the intelligent network vehicles control rules more consistent with human driver habits.