期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多目标蚁群算法的共享单车调度优化方法
1
作者 薛晴婉 瞿麦青 +4 位作者 彭怀军 姚运梅 郭伟伟 谭墍元 王云 《交通信息与安全》 CSCD 北大核心 2024年第2期124-135,共12页
共享单车作为公共交通接驳“、最后一公里”出行的重要交通工具,存在供需时空不匹配的问题,需要利用调度车实现共享单车的再平衡。针对部分现有共享单车调度方法存在的优化目标单一、调度点只能被访问1次、未考虑连续调度衔接等问题,建... 共享单车作为公共交通接驳“、最后一公里”出行的重要交通工具,存在供需时空不匹配的问题,需要利用调度车实现共享单车的再平衡。针对部分现有共享单车调度方法存在的优化目标单一、调度点只能被访问1次、未考虑连续调度衔接等问题,建立了以总需求不满足度最小和调度成本最小为目标的多目标优化模型。该模型考虑高峰小时调度点需求远大于调度车容量的情况,允许多辆调度车多时段连续调度,且允许调度车重复访问调度点。设计了多目标蚁群算法进行求解,引入非支配排序方法,将解集划分为不同的非支配层级,取最高层级的解,形成1组同时考虑2个目标的Pareto最优解。该算法引入了最大-最小蚂蚁系统,改进了状态转移概率规则和信息素更新规则,使其能够适用于求解多目标优化问题。算例结果表明,该模型能够在保证较低调度成本的同时,减少需求损失,算例调度后的总需求不满足度由不进行调度时的26.48%降低到17.86%。将不同算例规模下多目标蚁群算法与贪心算法求解结果进行比较,多目标蚁群算法在多时段连续调度问题上具有优势,能够统筹安排每辆调度车在每个调度周期的行驶路径和在各调度点的到达时间和共享单车装卸数量。多目标蚁群算法所求得的解的质量优于贪心算法,较大规模算例求解得到的调度成本和总需求不满足度比贪心算法分别降低了62%和23%。 展开更多
关键词 城市交通 共享单车调度 多目标优化 蚁群算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部