期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Robust Feature Extraction for Speaker Recognition Based on Constrained Nonnegative Tensor Factorization
1
作者 吴强 张丽清 石光川 《Journal of Computer Science & Technology》 SCIE EI CSCD 2010年第4期783-792,共10页
How to extract robust feature is an important research topic in machine learning community. In this paper, we investigate robust feature extraction for speech signal based on tensor structure and develop a new method ... How to extract robust feature is an important research topic in machine learning community. In this paper, we investigate robust feature extraction for speech signal based on tensor structure and develop a new method called constrained Nonnegative Tensor Factorization (cNTF). A novel feature extraction framework based on the cortical representation in primary auditory cortex (A1) is proposed for robust speaker recognition. Motivated by the neural firing rates model in A1, the speech signal first is represented as a general higher order tensor, cNTF is used to learn the basis functions from multiple interrelated feature subspaces and find a robust sparse representation for speech signal. Computer simulations are given to evaluate the performance of our method and comparisons with existing speaker recognition methods are also provided. The experimental results demonstrate that the proposed method achieves higher recognition accuracy in noisy environment. 展开更多
关键词 pattern recognition speaker recognition nonnegative tensor factorization feature extraction auditory perception
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部