In June 2013, the U.S. National Security Agency proposed two families of lightweight block ciphers, called SIMON and SPECK respectively. These ciphers are designed to perform excellently on both hardware and software ...In June 2013, the U.S. National Security Agency proposed two families of lightweight block ciphers, called SIMON and SPECK respectively. These ciphers are designed to perform excellently on both hardware and software platforms. In this paper, we mainly present zero-correlation linear cryptanalysis on various versions of SIMON. Firstly, by using miss- in-the-middle approach, we construct zero-correlation linear distinguishers of SIMON, and zero-correlation linear attacks are presented based oi1 careful analysis of key recovery phase. Secondly, multidimensional zero-correlation linear attacks are used to reduce the data complexity. Our zero-correlation linear attacks perform better than impossible differential attacks proposed by Abed et al. in ePrint Report 2013/568. Finally, we also use the divide-and-conquer technique to improve the results of linear cryptanalysis proposed by Javad et al. in ePrint Report 2013/663.展开更多
基金This work was supported by the National Basic Research 973 Program of China under Grant No. 2013CB338002 and the National Natural Science Foundation of China under Grant Nos. 61272476, 61202420, and 61232009.
文摘In June 2013, the U.S. National Security Agency proposed two families of lightweight block ciphers, called SIMON and SPECK respectively. These ciphers are designed to perform excellently on both hardware and software platforms. In this paper, we mainly present zero-correlation linear cryptanalysis on various versions of SIMON. Firstly, by using miss- in-the-middle approach, we construct zero-correlation linear distinguishers of SIMON, and zero-correlation linear attacks are presented based oi1 careful analysis of key recovery phase. Secondly, multidimensional zero-correlation linear attacks are used to reduce the data complexity. Our zero-correlation linear attacks perform better than impossible differential attacks proposed by Abed et al. in ePrint Report 2013/568. Finally, we also use the divide-and-conquer technique to improve the results of linear cryptanalysis proposed by Javad et al. in ePrint Report 2013/663.