针对水稻图像中复杂背景带来的病斑难以识别、检测速度慢等问题,以水稻稻瘟病、白叶枯病和胡麻斑病图像为研究对象,提出一种基于改进YOLOv4的水稻病害检测方法,该方法以YOLOv4模型为主体框架,采用轻量级网络MobileNet V3代替原始主干网...针对水稻图像中复杂背景带来的病斑难以识别、检测速度慢等问题,以水稻稻瘟病、白叶枯病和胡麻斑病图像为研究对象,提出一种基于改进YOLOv4的水稻病害检测方法,该方法以YOLOv4模型为主体框架,采用轻量级网络MobileNet V3代替原始主干网络CSPDarkNet-53,并通过在颈部网络添加坐标注意力模块(coordinate attention module,CAM)来提高模型的性能。结果表明,改进后的模型对水稻稻瘟病、白叶枯病、胡麻斑病的识别准确率均有所提升,平均精度均值(mean average precision,mAP)为85.34%,与原始YOLOv4模型相比,mAP提高了1.32%,每秒钟检测图像的帧数(frames per second,FPS)为53.43帧/s,检测速度提高了49.62%,说明研究得出的方法具有较高的平均准确率及较快的检测速度,能够用于田间复杂环境下的水稻病害快速识别。展开更多
文摘针对水稻图像中复杂背景带来的病斑难以识别、检测速度慢等问题,以水稻稻瘟病、白叶枯病和胡麻斑病图像为研究对象,提出一种基于改进YOLOv4的水稻病害检测方法,该方法以YOLOv4模型为主体框架,采用轻量级网络MobileNet V3代替原始主干网络CSPDarkNet-53,并通过在颈部网络添加坐标注意力模块(coordinate attention module,CAM)来提高模型的性能。结果表明,改进后的模型对水稻稻瘟病、白叶枯病、胡麻斑病的识别准确率均有所提升,平均精度均值(mean average precision,mAP)为85.34%,与原始YOLOv4模型相比,mAP提高了1.32%,每秒钟检测图像的帧数(frames per second,FPS)为53.43帧/s,检测速度提高了49.62%,说明研究得出的方法具有较高的平均准确率及较快的检测速度,能够用于田间复杂环境下的水稻病害快速识别。