在模板(Template Attacks,TA)攻击的研究中,如何利用功耗曲线信息,合理选择有效点,增强匹配效果是改进模板攻击的一个重要方向.文中分析了目前有关功耗曲线主要特征提取方法的优缺点,并提出了一种基于回声状态网络(Echo State Network,E...在模板(Template Attacks,TA)攻击的研究中,如何利用功耗曲线信息,合理选择有效点,增强匹配效果是改进模板攻击的一个重要方向.文中分析了目前有关功耗曲线主要特征提取方法的优缺点,并提出了一种基于回声状态网络(Echo State Network,ESN)的功耗曲线特征提取方法.该方法针对ESN分类方法中的储备池参数选择问题,以时间预测序列精度为标准,采用网格法进行参数空间的优化搜索,并利用神经网络以数据样本形式作为定量知识自行处理的能力,对粗略对齐下的功耗曲线的特征提取能力进行了测试和评估.实验结果表明,基于ESN功耗曲线特征提取方法在功耗曲线数量相同条件下,通过合理选择内核参数,能够降低模板攻击对功耗曲线预处理技术的依赖,提高正确密钥的分类精度.展开更多
文摘在模板(Template Attacks,TA)攻击的研究中,如何利用功耗曲线信息,合理选择有效点,增强匹配效果是改进模板攻击的一个重要方向.文中分析了目前有关功耗曲线主要特征提取方法的优缺点,并提出了一种基于回声状态网络(Echo State Network,ESN)的功耗曲线特征提取方法.该方法针对ESN分类方法中的储备池参数选择问题,以时间预测序列精度为标准,采用网格法进行参数空间的优化搜索,并利用神经网络以数据样本形式作为定量知识自行处理的能力,对粗略对齐下的功耗曲线的特征提取能力进行了测试和评估.实验结果表明,基于ESN功耗曲线特征提取方法在功耗曲线数量相同条件下,通过合理选择内核参数,能够降低模板攻击对功耗曲线预处理技术的依赖,提高正确密钥的分类精度.