在智能交通系统中,准确和高效的短时交通流量预测是交通诱导、管理和控制的前提。由于交通流量动态变化中表现出的时变性和非平稳性特征,其预测难度较大,是交通领域中亟待解决的难题。为提高短时交通流量的预测精度,本文设计与实现了基...在智能交通系统中,准确和高效的短时交通流量预测是交通诱导、管理和控制的前提。由于交通流量动态变化中表现出的时变性和非平稳性特征,其预测难度较大,是交通领域中亟待解决的难题。为提高短时交通流量的预测精度,本文设计与实现了基于自适应时序剖分与KNN(A-TS-KNN)的短时交通流量预测算法。①基于动态时间规整(Dynamic Time Warping,DTW)动态剖分单日时序为不同的交通模式;②在不同交通模式,采用互信息法求解每个预测时刻时间延迟的最大阈值,构造不同时间延迟的状态向量,生成交通流量历史数据库;③采用十次十折交叉验证的方法求解每个时刻不同时间延迟与不同K值的正交误差结果分布,提取误差最小的正交结果,得到自适应时间延迟与K值的参数组合;④采用K个最相似的近邻的距离倒数加权值作为预测结果。对比K近邻(K-nearest neighbors,KNN)、支持向量回归(Support vector regression,SVR)、长短期记忆神经网络(Long-short term memory neural network,LSTM)以及门控递归单元神经网络(Gate recurrent unit neural network,GRU)共4种主流预测模型,A-TS-KNN算法预测精度显著提升;将A-TS-KNN算法用于福州市城市路网中其他交叉路口的短时交通流量预测,结果表现出良好的泛化能力。展开更多
文摘在智能交通系统中,准确和高效的短时交通流量预测是交通诱导、管理和控制的前提。由于交通流量动态变化中表现出的时变性和非平稳性特征,其预测难度较大,是交通领域中亟待解决的难题。为提高短时交通流量的预测精度,本文设计与实现了基于自适应时序剖分与KNN(A-TS-KNN)的短时交通流量预测算法。①基于动态时间规整(Dynamic Time Warping,DTW)动态剖分单日时序为不同的交通模式;②在不同交通模式,采用互信息法求解每个预测时刻时间延迟的最大阈值,构造不同时间延迟的状态向量,生成交通流量历史数据库;③采用十次十折交叉验证的方法求解每个时刻不同时间延迟与不同K值的正交误差结果分布,提取误差最小的正交结果,得到自适应时间延迟与K值的参数组合;④采用K个最相似的近邻的距离倒数加权值作为预测结果。对比K近邻(K-nearest neighbors,KNN)、支持向量回归(Support vector regression,SVR)、长短期记忆神经网络(Long-short term memory neural network,LSTM)以及门控递归单元神经网络(Gate recurrent unit neural network,GRU)共4种主流预测模型,A-TS-KNN算法预测精度显著提升;将A-TS-KNN算法用于福州市城市路网中其他交叉路口的短时交通流量预测,结果表现出良好的泛化能力。