期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种基于边界识别的聚类算法
被引量:
5
1
作者
张选平
祝兴昌
马琮
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2007年第12期1387-1390,1395,共5页
针对基于密度的聚类算法由高密度区到低密度区的处理顺序所带来的不能识别低密度对象类别的缺陷,通过对聚类过程中可能存在的边界识别进行讨论,提出了一种基于边界识别的聚类算法.该算法的思想是:同簇优先权高于密度优先权,即在选择下...
针对基于密度的聚类算法由高密度区到低密度区的处理顺序所带来的不能识别低密度对象类别的缺陷,通过对聚类过程中可能存在的边界识别进行讨论,提出了一种基于边界识别的聚类算法.该算法的思想是:同簇优先权高于密度优先权,即在选择下一个对象进行聚类时,在已聚类的对象中优先选择同一簇的对象,当对象沿某一方向扩展到达簇边界时停止扩展,转而向其他方向扩展,这种处理顺序能使得类别最大化.通过分析簇边界的密度变化特征,建立了边界识别准则,并根据该准则对数据进行聚类.通过在合成数据和美国加州大学提供的知识挖掘数据库数据集上的实验结果表明,所提算法能有效地处理低密度区域的数据,与识别聚类结构的对象排序算法相比,聚类效果可提高4%左右,而时间性能相当.
展开更多
关键词
聚类算法
密度
边界识别
下载PDF
职称材料
题名
一种基于边界识别的聚类算法
被引量:
5
1
作者
张选平
祝兴昌
马琮
机构
西安交通大学计算机科学与技术系
出处
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2007年第12期1387-1390,1395,共5页
基金
国家自然科学基金资助项目(60673087)
文摘
针对基于密度的聚类算法由高密度区到低密度区的处理顺序所带来的不能识别低密度对象类别的缺陷,通过对聚类过程中可能存在的边界识别进行讨论,提出了一种基于边界识别的聚类算法.该算法的思想是:同簇优先权高于密度优先权,即在选择下一个对象进行聚类时,在已聚类的对象中优先选择同一簇的对象,当对象沿某一方向扩展到达簇边界时停止扩展,转而向其他方向扩展,这种处理顺序能使得类别最大化.通过分析簇边界的密度变化特征,建立了边界识别准则,并根据该准则对数据进行聚类.通过在合成数据和美国加州大学提供的知识挖掘数据库数据集上的实验结果表明,所提算法能有效地处理低密度区域的数据,与识别聚类结构的对象排序算法相比,聚类效果可提高4%左右,而时间性能相当.
关键词
聚类算法
密度
边界识别
Keywords
clustering algorithm
density
boundary identification
分类号
TP311.13 [自动化与计算机技术—计算机软件与理论]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一种基于边界识别的聚类算法
张选平
祝兴昌
马琮
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2007
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部