期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Highly sensitive and stable SERS probes of alternately deposited Ag and Au layers on 3D SiO2 nanogrids for detection of trace mercury ions 被引量:1
1
作者 田毅 王汉夫 +6 位作者 闫兰琴 张先锋 Attia Falak 陈佩佩 董凤良 孙连峰 禇卫国 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第7期497-506,共10页
The hazard of Hg ion pollution triggers the motivation to explore a fast, sensitive, and reliable detection method. Here, we design and fabricate novel 36-nm-thick Ag-Au composite layers alternately deposited on three... The hazard of Hg ion pollution triggers the motivation to explore a fast, sensitive, and reliable detection method. Here, we design and fabricate novel 36-nm-thick Ag-Au composite layers alternately deposited on three-dimensional (3D) periodic SiO2 nanogrids as surface-enhanced Raman scattering (SERS) probes. The SERS effects of the probes depend mainly on the positions and intensities of their localized surface plasmon resonance (LSPR) peaks, which is confirmed by the absorption spectra from finite-difference time-domain (FDTD) calculations. By optimizing the structure and material to maximize the intrinsic electric field enhancement based on the design method of 3D periodic SERS probes proposed, high performance of the Ag-Au/SiO2 nanogrid probes is achieved with the stability further enhanced by annealing. The optimized probes show the outstanding stability with only 4.0% SERS intensity change during 10-day storage, the excellent detection uniformity of 5.78% (RSD), the detection limit of 5.0 × 10-12 M (1 ppt), and superior selectivity for Hg ions. The present study renders it possible to realize the rapid and reliable detection of trace heavy metal ions by developing high- performance 3D periodic structure SERS probes by designing novel 3D structure and optimizing plasmonic material. 展开更多
关键词 surface-enhanced Raman scattering Ag-Au composite layer nanostructure design trace Hg ions detection
下载PDF
Thermal transport property of Ge_(34) and d-Ge investigated by molecular dynamics and the Slack's equation
2
作者 王汉夫 禇卫国 +1 位作者 郭延军 金灏 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第7期445-455,共11页
In this study, we evaluate the values of lattice thermal conductivity κL of type Ⅱ Ge clathrate (Ge34) and diamond phase Ge crystal (d-Ce) with the equilibrium molecular dynamics (EMD) method and the Slack's ... In this study, we evaluate the values of lattice thermal conductivity κL of type Ⅱ Ge clathrate (Ge34) and diamond phase Ge crystal (d-Ce) with the equilibrium molecular dynamics (EMD) method and the Slack's equation. The key parameters of the Slack's equation are derived from the thermodynamic properties obtained from the lattice dynamics (LD) calculations. The empirical Tersoff's potential is used in both EMD and LD simulations. The thermal conductivities of d-Ge calculated by both methods are in accordance with the experimental values. The predictions of the Slack's equation are consistent with the EMD results above 250 K for both Ge34 and d-Ge. In a temperature range of 200-1000 K, the κL value of d-Ge is about several times larger than that of Ge34. 展开更多
关键词 CLATHRATE thermal conductivity molecular dynamics simulation the Slack's equation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部