期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
快速多目标跟踪GM-PHD滤波算法 被引量:5
1
作者 陈金广 秦晓姗 马丽丽 《计算机科学》 CSCD 北大核心 2016年第3期317-320,F0003,共5页
传统的GM-PHD(Gaussian Mixture-Probability Hypothesis Density)滤波算法用当前时刻接收到的全部量测值对所有高斯项进行更新,使得大量的运算时间花费在使用无效量测对高斯项的更新上。针对此问题,提出一种快速多目标跟踪GM-PHD滤波... 传统的GM-PHD(Gaussian Mixture-Probability Hypothesis Density)滤波算法用当前时刻接收到的全部量测值对所有高斯项进行更新,使得大量的运算时间花费在使用无效量测对高斯项的更新上。针对此问题,提出一种快速多目标跟踪GM-PHD滤波器。首先在算法预测步骤中将高斯项分为新生及存活目标两类;然后在更新步骤中先计算存活目标与所有量测之间的残差,使用椭球门限,用门限内的量测值来更新存活目标;接着计算新生目标与剩下量测之间的残差,再次使用落入椭球门限内的量测值来更新新生目标,这样可以最大限度地将无效量测排除掉,从而减少算法运算时间。实验结果表明,该方法在保证目标跟踪精度的同时降低了算法时间复杂度,其综合性能优于传统的GM-PHD滤波算法。 展开更多
关键词 多目标跟踪 高斯混合概率假设密度滤波器 椭球门限 量测划分
下载PDF
一种状态与杂波相关条件下的GM-CPHD算法 被引量:1
2
作者 马丽丽 秦晓姗 陈金广 《系统仿真学报》 CAS CSCD 北大核心 2016年第7期1637-1643,共7页
对许多传感器而言,所观测到的杂波更容易集中在目标所处区域。此时,杂波不再是均匀分布,杂波的分布与真实目标所处状态相关,这与传统滤波算法中的假设不同。在此条件下,传统多目标跟踪算法的跟踪精度和实时性会受到很大影响。针对该问题... 对许多传感器而言,所观测到的杂波更容易集中在目标所处区域。此时,杂波不再是均匀分布,杂波的分布与真实目标所处状态相关,这与传统滤波算法中的假设不同。在此条件下,传统多目标跟踪算法的跟踪精度和实时性会受到很大影响。针对该问题,提出一种状态与杂波相关条件下的GM-CPHD滤波算法。对状态与杂波之间的相关性进行建模;根据整个监视区域的杂波分布重新计算杂波强度,并将其应用于滤波更新过程中;为降低时间复杂度,采用自适应椭球门限在算法更新步骤之前对量测集合进行预处理,使用落入门限内的量测集合进行更新步骤的运算。仿真结果表明,在状态与杂波相关条件下,本文算法较传统算法具有更好的滤波精度以及更低的时间复杂度。 展开更多
关键词 状态相关杂波 概率假设密度滤波 目标跟踪 杂波强度 自适应椭球门限
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部