利用激光共振增强多光子电离技术,我们既可以观察中性物种激发态的振动结构也可以获得相应正离子的高分辨电子能谱.采用自行研制的双静电透镜系统对Xe原子在258.00 nm激光束下的三光子电离过程展开研究,优化得到飞行时间质谱的质量分辨...利用激光共振增强多光子电离技术,我们既可以观察中性物种激发态的振动结构也可以获得相应正离子的高分辨电子能谱.采用自行研制的双静电透镜系统对Xe原子在258.00 nm激光束下的三光子电离过程展开研究,优化得到飞行时间质谱的质量分辨率(m/Δm)达到1300,慢电子速度成像的电子能量分辨率(ΔE/E)为2.4%,阈值电子能量分辨优于1 me V.在该条件下,开展了分子的电子谱研究,研究了苯的激发电子态共振增强双光子电离光谱和振动态选择的苯正离子的慢电子速度成像谱,通过对谱线归属,获得了1B2u激发态的振动序列和苯正离子的振动能级结构信息.展开更多
We describe a collinear velocity-map photoelectron imaging spectrometer, which combines a Wiley-McLaren time-of-flight mass analyzer with a dual-valve laser vaporization source for investigating size-selected cluster ...We describe a collinear velocity-map photoelectron imaging spectrometer, which combines a Wiley-McLaren time-of-flight mass analyzer with a dual-valve laser vaporization source for investigating size-selected cluster and reaction intermediate anions. To generate the reaction anions conveniently, two pulsed valves and a reaction channel are employed instead of premixing carrier gas. The collinear photoelectron imaging spectrometer adopts modified velocity-map electrostatic lens, and provides kinetic energy resolution better than 3%. The performance of the instrument is demonstrated on the photodetachment of Si4^- at 532 and 355 nm, and SiaC^- at 532 nm, respectively. In both cases, photoelectron spectra and anisotropy parameters are obtained from the images. For Si4^-, the spectra show two well- resolved vibrational progressions which correspond to the ground state and the first excited state of the neutral Si4 with peak spacing of 330 and 312 cm^-1, respectively. Preliminary results suggest that the apparatus is a powerful tool for characterizing the electronic structure and photodetachment dynamics of cluster anions.展开更多
The geometric structures and vibration frequencies of para-chlorofluorobenzene(p-Cl FPh)in the first excited state of neutral and ground state of cation were investigated by resonanceenhanced multiphoton ionization an...The geometric structures and vibration frequencies of para-chlorofluorobenzene(p-Cl FPh)in the first excited state of neutral and ground state of cation were investigated by resonanceenhanced multiphoton ionization and slow electron velocity-map imaging.The infrared spectrum of S0 state and absorption spectrum for S1←S0 transition in p-Cl FPh were also recorded.Based on the one-color resonant two-photon ionization spectrum and two-color resonant two-photon ionization spectrum,we obtained the adiabatic excited-state energy of p-Cl FPh as 36302±4 cm^-1.In the two-color resonant two-photon ionization slow electron velocity-map imagin spectra,the accurate adiabatic ionization potential of p-Cl FPh was extrapolated as 72937±8 cm^-1 via threshold ionization measurement.In addition,FranckCondon simulation was performed to help us confidently ascertain the main vibrational modes in the S1 and D0 states.Furthermore,the mixing of vibrational modes between S0→S1 and S1→D0 has been analyzed.展开更多
文摘利用激光共振增强多光子电离技术,我们既可以观察中性物种激发态的振动结构也可以获得相应正离子的高分辨电子能谱.采用自行研制的双静电透镜系统对Xe原子在258.00 nm激光束下的三光子电离过程展开研究,优化得到飞行时间质谱的质量分辨率(m/Δm)达到1300,慢电子速度成像的电子能量分辨率(ΔE/E)为2.4%,阈值电子能量分辨优于1 me V.在该条件下,开展了分子的电子谱研究,研究了苯的激发电子态共振增强双光子电离光谱和振动态选择的苯正离子的慢电子速度成像谱,通过对谱线归属,获得了1B2u激发态的振动序列和苯正离子的振动能级结构信息.
基金ACKNOWLEDGMENTS We thank Professor Hai-yang Li for simulation electron trajectory, and H. Reisler for providing the image analysis software. This work was supported by the National Natural Science Foundation of China (No.20773126), the Ministry of Science and Technology of China, and the Chinese Academy of Sciences.
文摘We describe a collinear velocity-map photoelectron imaging spectrometer, which combines a Wiley-McLaren time-of-flight mass analyzer with a dual-valve laser vaporization source for investigating size-selected cluster and reaction intermediate anions. To generate the reaction anions conveniently, two pulsed valves and a reaction channel are employed instead of premixing carrier gas. The collinear photoelectron imaging spectrometer adopts modified velocity-map electrostatic lens, and provides kinetic energy resolution better than 3%. The performance of the instrument is demonstrated on the photodetachment of Si4^- at 532 and 355 nm, and SiaC^- at 532 nm, respectively. In both cases, photoelectron spectra and anisotropy parameters are obtained from the images. For Si4^-, the spectra show two well- resolved vibrational progressions which correspond to the ground state and the first excited state of the neutral Si4 with peak spacing of 330 and 312 cm^-1, respectively. Preliminary results suggest that the apparatus is a powerful tool for characterizing the electronic structure and photodetachment dynamics of cluster anions.
基金the National Natural Science Foundation of China(No.11674003,No.21873003,No.21503003,No.11704004,and No.61475001)Anhui Natural Science Foundation(No.1908085QA17)+1 种基金support from Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund(the second phase)(No.U1501501)Super Computation Center of Shenzhen。
文摘The geometric structures and vibration frequencies of para-chlorofluorobenzene(p-Cl FPh)in the first excited state of neutral and ground state of cation were investigated by resonanceenhanced multiphoton ionization and slow electron velocity-map imaging.The infrared spectrum of S0 state and absorption spectrum for S1←S0 transition in p-Cl FPh were also recorded.Based on the one-color resonant two-photon ionization spectrum and two-color resonant two-photon ionization spectrum,we obtained the adiabatic excited-state energy of p-Cl FPh as 36302±4 cm^-1.In the two-color resonant two-photon ionization slow electron velocity-map imagin spectra,the accurate adiabatic ionization potential of p-Cl FPh was extrapolated as 72937±8 cm^-1 via threshold ionization measurement.In addition,FranckCondon simulation was performed to help us confidently ascertain the main vibrational modes in the S1 and D0 states.Furthermore,the mixing of vibrational modes between S0→S1 and S1→D0 has been analyzed.