期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于领域自适应的多源多标签行人属性识别
被引量:
1
1
作者
程南江
余贞侠
+1 位作者
陈琳
乔贺辙
《计算机应用》
CSCD
北大核心
2022年第8期2401-2406,共6页
当前行人属性识别(PAR)公开数据集中属性标注繁杂且采集场景多样,各数据集中行人属性差异较大,进而导致公开数据库已有的标记信息数据难以直接应用到PAR实际问题中。针对上述问题,提出一种基于领域自适应的多源多标签PAR方法。首先通过...
当前行人属性识别(PAR)公开数据集中属性标注繁杂且采集场景多样,各数据集中行人属性差异较大,进而导致公开数据库已有的标记信息数据难以直接应用到PAR实际问题中。针对上述问题,提出一种基于领域自适应的多源多标签PAR方法。首先通过领域自适应方法对样本进行特征对齐完成多个数据集之间的统一风格转换;接着提出多属性one-hot编码加权算法,将多数据集中共有属性的标签对齐;最后结合多标签半监督损失函数,进行跨数据集联合训练以提高属性识别准确率。通过所提出的特征对齐和标签对齐算法,可有效解决PAR多数据集中属性异构性问题。将三个行人属性数据集PETA、RAPv1和RAPv2分别与PA-100K数据集对齐后的实验结果表明,所提出的方法对比StrongBaseline在平均准确率上分别提升了1.22、1.62和1.53个百分点,说明该方法在跨数据集PAR中具有一定的优势。
展开更多
关键词
行人属性识别
多标签学习
领域自适应
深度学习
卷积神经网络
下载PDF
职称材料
题名
基于领域自适应的多源多标签行人属性识别
被引量:
1
1
作者
程南江
余贞侠
陈琳
乔贺辙
机构
成都信息工程大学计算机学院
中国科学院重庆绿色智能技术研究院
出处
《计算机应用》
CSCD
北大核心
2022年第8期2401-2406,共6页
基金
国家重点研发计划项目(2020YFC0833406)。
文摘
当前行人属性识别(PAR)公开数据集中属性标注繁杂且采集场景多样,各数据集中行人属性差异较大,进而导致公开数据库已有的标记信息数据难以直接应用到PAR实际问题中。针对上述问题,提出一种基于领域自适应的多源多标签PAR方法。首先通过领域自适应方法对样本进行特征对齐完成多个数据集之间的统一风格转换;接着提出多属性one-hot编码加权算法,将多数据集中共有属性的标签对齐;最后结合多标签半监督损失函数,进行跨数据集联合训练以提高属性识别准确率。通过所提出的特征对齐和标签对齐算法,可有效解决PAR多数据集中属性异构性问题。将三个行人属性数据集PETA、RAPv1和RAPv2分别与PA-100K数据集对齐后的实验结果表明,所提出的方法对比StrongBaseline在平均准确率上分别提升了1.22、1.62和1.53个百分点,说明该方法在跨数据集PAR中具有一定的优势。
关键词
行人属性识别
多标签学习
领域自适应
深度学习
卷积神经网络
Keywords
Pedestrian Attribute Recognition(PAR)
multi-label learning
domain adaption
deep learning
Convolutional Neural Network(CNN)
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于领域自适应的多源多标签行人属性识别
程南江
余贞侠
陈琳
乔贺辙
《计算机应用》
CSCD
北大核心
2022
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部