以风电机组轴承为研究对象,利用SCADA(Supervisory Control And Data Acquisition)监测参数,应用最小二乘曲面拟合算法,建立轴承温度健康状态劣化趋势模型。改进并应用EEMD(Ensemble Empirical Mode Decomposition)方法,分解具有非平稳...以风电机组轴承为研究对象,利用SCADA(Supervisory Control And Data Acquisition)监测参数,应用最小二乘曲面拟合算法,建立轴承温度健康状态劣化趋势模型。改进并应用EEMD(Ensemble Empirical Mode Decomposition)方法,分解具有非平稳性特性的轴承劣化趋势为一系列相对平稳的分量,利用时间序列神经网络分别对各分量单独预测,叠加所有分量的预测值作为最终的预测结果。经过仿真测试,该方法能够以更高的精度预测风电机组轴承健康状态劣化趋势。展开更多
文摘以风电机组轴承为研究对象,利用SCADA(Supervisory Control And Data Acquisition)监测参数,应用最小二乘曲面拟合算法,建立轴承温度健康状态劣化趋势模型。改进并应用EEMD(Ensemble Empirical Mode Decomposition)方法,分解具有非平稳性特性的轴承劣化趋势为一系列相对平稳的分量,利用时间序列神经网络分别对各分量单独预测,叠加所有分量的预测值作为最终的预测结果。经过仿真测试,该方法能够以更高的精度预测风电机组轴承健康状态劣化趋势。