在Matlab/Simulink仿真环境下,设计了含PV、并网逆变器和控制器三个模块的5 k W单相光伏并网逆变系统。控制器采用电压外环电流内环的双闭环控制方法,具有最大功率跟踪功能。在外界环境突变情况下,对比分析了变步长电导增量法和定步长...在Matlab/Simulink仿真环境下,设计了含PV、并网逆变器和控制器三个模块的5 k W单相光伏并网逆变系统。控制器采用电压外环电流内环的双闭环控制方法,具有最大功率跟踪功能。在外界环境突变情况下,对比分析了变步长电导增量法和定步长电导增量法的最大功率跟踪控制效果以及系统并网性能。仿真结果表明,光照强度突变时,采用定步长电导增量法,并网谐波电流总畸变率超出3%,不满足并网要求,而采用变步长电导增量法,在温度和光照强度突变时,均可快速、准确实现最大功率跟踪控制,且并网谐波电流总畸变率低于3%,功率因数接近1。展开更多
文摘在Matlab/Simulink仿真环境下,设计了含PV、并网逆变器和控制器三个模块的5 k W单相光伏并网逆变系统。控制器采用电压外环电流内环的双闭环控制方法,具有最大功率跟踪功能。在外界环境突变情况下,对比分析了变步长电导增量法和定步长电导增量法的最大功率跟踪控制效果以及系统并网性能。仿真结果表明,光照强度突变时,采用定步长电导增量法,并网谐波电流总畸变率超出3%,不满足并网要求,而采用变步长电导增量法,在温度和光照强度突变时,均可快速、准确实现最大功率跟踪控制,且并网谐波电流总畸变率低于3%,功率因数接近1。