A single-channel far-infrared (FIR) laser interferometer was developed to measure the line averaged electron density on the EAST tokamak. The structure of the single-channel FIR laser interferometer is described in ...A single-channel far-infrared (FIR) laser interferometer was developed to measure the line averaged electron density on the EAST tokamak. The structure of the single-channel FIR laser interferometer is described in detail. The evolution of density sawtooth oscillation was measured by means the FIR laser interferometer, and was identified by electron cyclotron emission (ECE) signals and soft X-ray intensity. The discharges with and without sawtooth were compared with each other in the Hugill diagram.展开更多
The particle diffusion coefficient and the convection velocity were studied based on the density modulation using D2 gas puffing on the HT-7 tokamak. The density was measured by a five-channel FIR interferometer. The ...The particle diffusion coefficient and the convection velocity were studied based on the density modulation using D2 gas puffing on the HT-7 tokamak. The density was measured by a five-channel FIR interferometer. The density modulation amplitude was 10% of the central chord averaged background density and the modulation frequency was 10 Hz in the experiments. The particle diffusion coefficient (D) and the convection velocity (V) were obtained for different background plasmas with the central chord averaged density 〈ne〉 = 1.5×10^19m^-3 and 3.0×10^19 m^-3 respectively. It was observed that the influence of density modulation on the main plasma parameters was very weak. This technology is expected to be useful for the analysis of LHW and IBW heated plasmas on HT-7 tokamak in the near future.展开更多
A five-channel far-infrared (FIR) hydrogen cyanide (HCN) laser interferometer was developed to measure plasma electron density profile on the HT-7 superconducting tokamak. The principle and structure of the five-chann...A five-channel far-infrared (FIR) hydrogen cyanide (HCN) laser interferometer was developed to measure plasma electron density profile on the HT-7 superconducting tokamak. The principle and structure of the five-channel FIR laser interferometer is described. The laser source used in the interferometer was a continuous wave glow discharge HCN laser with a 3.4 m cavity length and a 100 mW power output at 337μm wavelength. The temporal resolution was 0.1 ms and the detection sensitivity was 1/12 fringe. Preliminary experimental results measured by the interferometer on HT-7 tokamak are reported.展开更多
In this paper the control system of the pellet injector is introduced in detail and the system mainly includes two parts: the present and the remote control system. The present control system controls the injector and...In this paper the control system of the pellet injector is introduced in detail and the system mainly includes two parts: the present and the remote control system. The present control system controls the injector and provides the interface to the remote system. And the remote control system has acquired present signals with analog input card and perform the actions through digit output card, it also has an interface for Windows programming easily used by the operators when carrying out the pellet injection experiments. Through several HT-7 campaigns, the remote control system has been validated to be feasible and reliable and has made successful shots for studying the interactions between the pellets and plasma.展开更多
基金National Natural Science Foundation of China(Nos.10475078,10675127,10675126,10675124,10605028)
文摘A single-channel far-infrared (FIR) laser interferometer was developed to measure the line averaged electron density on the EAST tokamak. The structure of the single-channel FIR laser interferometer is described in detail. The evolution of density sawtooth oscillation was measured by means the FIR laser interferometer, and was identified by electron cyclotron emission (ECE) signals and soft X-ray intensity. The discharges with and without sawtooth were compared with each other in the Hugill diagram.
基金supported partly by Japanese Society of Promotion of Science and Chinese Academy of Sciences Core-University Program on Plasma and Nuclear Fusion in 2004
文摘The particle diffusion coefficient and the convection velocity were studied based on the density modulation using D2 gas puffing on the HT-7 tokamak. The density was measured by a five-channel FIR interferometer. The density modulation amplitude was 10% of the central chord averaged background density and the modulation frequency was 10 Hz in the experiments. The particle diffusion coefficient (D) and the convection velocity (V) were obtained for different background plasmas with the central chord averaged density 〈ne〉 = 1.5×10^19m^-3 and 3.0×10^19 m^-3 respectively. It was observed that the influence of density modulation on the main plasma parameters was very weak. This technology is expected to be useful for the analysis of LHW and IBW heated plasmas on HT-7 tokamak in the near future.
文摘A five-channel far-infrared (FIR) hydrogen cyanide (HCN) laser interferometer was developed to measure plasma electron density profile on the HT-7 superconducting tokamak. The principle and structure of the five-channel FIR laser interferometer is described. The laser source used in the interferometer was a continuous wave glow discharge HCN laser with a 3.4 m cavity length and a 100 mW power output at 337μm wavelength. The temporal resolution was 0.1 ms and the detection sensitivity was 1/12 fringe. Preliminary experimental results measured by the interferometer on HT-7 tokamak are reported.
基金This project has been supported by the Chinese Nature Science Funds, Contract No.19789501.
文摘In this paper the control system of the pellet injector is introduced in detail and the system mainly includes two parts: the present and the remote control system. The present control system controls the injector and provides the interface to the remote system. And the remote control system has acquired present signals with analog input card and perform the actions through digit output card, it also has an interface for Windows programming easily used by the operators when carrying out the pellet injection experiments. Through several HT-7 campaigns, the remote control system has been validated to be feasible and reliable and has made successful shots for studying the interactions between the pellets and plasma.