动态的实时估计锂离子电池荷电状态(state of charge,SOC)是锂离子电池管理系统研究的关键技术。针对扩展卡尔曼滤波(EKF)估计SOC误差大的不足,基于二阶RC等效电路模型,提出了一种基于迭代中心差分卡尔曼滤波(ICDKF)算法的磷酸铁锂电池...动态的实时估计锂离子电池荷电状态(state of charge,SOC)是锂离子电池管理系统研究的关键技术。针对扩展卡尔曼滤波(EKF)估计SOC误差大的不足,基于二阶RC等效电路模型,提出了一种基于迭代中心差分卡尔曼滤波(ICDKF)算法的磷酸铁锂电池SOC估计方法。利用Matlab进行了仿真,并与扩展卡尔曼滤波和中心差分卡尔曼滤波(CDKF)算法进行了效果对比,从仿真结果可以看出,该SOC算法有效地降低了估计误差,与EKF相比,具有更好的滤波估计精度。展开更多
文摘动态的实时估计锂离子电池荷电状态(state of charge,SOC)是锂离子电池管理系统研究的关键技术。针对扩展卡尔曼滤波(EKF)估计SOC误差大的不足,基于二阶RC等效电路模型,提出了一种基于迭代中心差分卡尔曼滤波(ICDKF)算法的磷酸铁锂电池SOC估计方法。利用Matlab进行了仿真,并与扩展卡尔曼滤波和中心差分卡尔曼滤波(CDKF)算法进行了效果对比,从仿真结果可以看出,该SOC算法有效地降低了估计误差,与EKF相比,具有更好的滤波估计精度。