Effective soil particle size composition can more realistically reflect the particle size sorting process of erosion.To reveal the individual contributions of rainfall intensity and slope to splash erosion,and to dist...Effective soil particle size composition can more realistically reflect the particle size sorting process of erosion.To reveal the individual contributions of rainfall intensity and slope to splash erosion,and to distinguish the enrichment ratio of each size and the critical size in splash,loessial soil collected on the Loess Plateau in May 2019 was tested under different rainfall intensities(60,84,108,132,156 mm h^(-1))and slopes(0°,5°,10°,15°,20°).The results demonstrated that 99%of splash mass was concentrated in 0–0.4 m.Rainfall intensity was the major factor for splash according to the raindrop generation mode by rainfall simulator nozzles.The contributions of rainfall intensity to splash erosion were 82.72%and 93.24%,respectively in upslope and downslope direction.The mass percentages of effective clay and effective silt were positively correlated with rainfall intensity,while the mass percentages of effective very fine sand and effective fine sand were negatively correlated with rainfall intensity.Opposite to effective very fine sand,the mass percentages of effective clay significantly decreased with increasing distance.Rainfall intensity had significant effects on enrichment ratios,positively for effective clay and effective silt and negatively for effective very fine sand and effective fine sand.The critical effective particle size in splash for loessial soil was 50μm.展开更多
基金Natural Science Foundation of China,No.42077058,No.41601282,No.41867015Young Talent Fund of University Association for Science and Technology in Shaanxi,China,No.20210705+1 种基金Fundamental Research Funds for Central Universities,No.GK202309005Shaanxi Provincial Key Research and Development Program,No.2021ZDLSF05-02。
文摘Effective soil particle size composition can more realistically reflect the particle size sorting process of erosion.To reveal the individual contributions of rainfall intensity and slope to splash erosion,and to distinguish the enrichment ratio of each size and the critical size in splash,loessial soil collected on the Loess Plateau in May 2019 was tested under different rainfall intensities(60,84,108,132,156 mm h^(-1))and slopes(0°,5°,10°,15°,20°).The results demonstrated that 99%of splash mass was concentrated in 0–0.4 m.Rainfall intensity was the major factor for splash according to the raindrop generation mode by rainfall simulator nozzles.The contributions of rainfall intensity to splash erosion were 82.72%and 93.24%,respectively in upslope and downslope direction.The mass percentages of effective clay and effective silt were positively correlated with rainfall intensity,while the mass percentages of effective very fine sand and effective fine sand were negatively correlated with rainfall intensity.Opposite to effective very fine sand,the mass percentages of effective clay significantly decreased with increasing distance.Rainfall intensity had significant effects on enrichment ratios,positively for effective clay and effective silt and negatively for effective very fine sand and effective fine sand.The critical effective particle size in splash for loessial soil was 50μm.