An anion-exchange-based chromatographic separation approach was developed to selectively recover zinc and copper from the high-chlorine raffinate generated in the process of germanium chlorination distillation using 7...An anion-exchange-based chromatographic separation approach was developed to selectively recover zinc and copper from the high-chlorine raffinate generated in the process of germanium chlorination distillation using 717 resins based on the coordination difference between Zn^(2+)/Cu^(2+)and Cl^(-).The theoretical calculation and spectroscopic analyses suggested that the coordination between Zn^(2+)and Cl^(-)is much stronger than that between Cu^(2+)and Cl^(-),and the Cl-concentration significantly affects Zn(Ⅱ)and Cu(Ⅱ)species.The factors involving Cl-concentration,resin dosage,shaking speed,and temperature were investigated to determine the optimal condition,and the maximum separation factor of Zn/Cu reached as high as 479.2.The results of the adsorption isotherms,adsorption kinetics,SEM,FTIR,and XPS analyses indicated that the process followed the monolayer uniform chemisorption.Through the continuous adsorption experiments,Zn(Ⅱ)and Cu(Ⅱ)in the high-chlorine raffinate were separately recovered,allowing the reuse of residual waste acid and germanium.展开更多
基金financially supported by the Postdoctoral Research Foundation of Central South University,China(No.140050037)。
文摘An anion-exchange-based chromatographic separation approach was developed to selectively recover zinc and copper from the high-chlorine raffinate generated in the process of germanium chlorination distillation using 717 resins based on the coordination difference between Zn^(2+)/Cu^(2+)and Cl^(-).The theoretical calculation and spectroscopic analyses suggested that the coordination between Zn^(2+)and Cl^(-)is much stronger than that between Cu^(2+)and Cl^(-),and the Cl-concentration significantly affects Zn(Ⅱ)and Cu(Ⅱ)species.The factors involving Cl-concentration,resin dosage,shaking speed,and temperature were investigated to determine the optimal condition,and the maximum separation factor of Zn/Cu reached as high as 479.2.The results of the adsorption isotherms,adsorption kinetics,SEM,FTIR,and XPS analyses indicated that the process followed the monolayer uniform chemisorption.Through the continuous adsorption experiments,Zn(Ⅱ)and Cu(Ⅱ)in the high-chlorine raffinate were separately recovered,allowing the reuse of residual waste acid and germanium.