基金National Natural Science Foundation of China(31801632)Science and Technology Innovation Foundation of Shanxi(2019L0396)Shanxi Agricultural of University Research Grant(2016YJ04)。
文摘利用高光谱(900~1700 nm)对完好、木栓化和烂果茄子进行识别研究。共采摘了252个茄子样本,包含完好茄子170个,木栓化茄子60个和烂果茄子22个,利用高光谱成像系统采集完好、木栓化和烂果3种区域一共252个样本的高光谱图像,然后提取合理的感兴趣区域(ROI)获得样本光谱数据。采用多种预处理方法进行光谱预处理,建立偏最小二乘(partial least squares method,PLS)判别分析模型,结果表明,经normalize预处理后模型的预测效果最好,因此选择normalize作为预处理方法。基于预处理后的光谱数据,采用连续投影法(SPA)、回归系数法(RC)和竞争性自适应重加权算法(CARS)提取特征波长,并分别建立偏最小二乘(PLS)和多元线性回归(MLR)判别模型进行研究。结果表明:CARS-MLR模型对3种类型样本鉴别效果最佳,其校正集决定系数R_(c)^(2)为0.94,预测集决定系数R_(p)^(2)为0.90,RMSEC和RMSEP分别为0.19和0.21,预测集判别准确率达到96.82%。本研究采用高光谱可以对完好、木栓化和烂果茄子进行有效鉴别,为茄子的缺陷无损检测提供了理论参考。