提出了一种基于多示例学习(multi-instance learning,MIL)的局部离群点检测算法,称之为MIL-LOF(a local outlier factor based on multi-instance learning).算法采用MIL框架,首先将真实对象提取为多示例形式,然后运用退化策略和权重调...提出了一种基于多示例学习(multi-instance learning,MIL)的局部离群点检测算法,称之为MIL-LOF(a local outlier factor based on multi-instance learning).算法采用MIL框架,首先将真实对象提取为多示例形式,然后运用退化策略和权重调整方法,计算综合离群点因子,最后检测离群点.在实际企业监控数据以及公共数据集上将MIL-LOF与经典局部离群点检测算法及其优化算法进行了对比实验,结果表明本文提出的MIL-LOF算法在准确性、全面性及高效性上相对其他算法均可获得较为明显的提高.展开更多
文摘提出了一种基于多示例学习(multi-instance learning,MIL)的局部离群点检测算法,称之为MIL-LOF(a local outlier factor based on multi-instance learning).算法采用MIL框架,首先将真实对象提取为多示例形式,然后运用退化策略和权重调整方法,计算综合离群点因子,最后检测离群点.在实际企业监控数据以及公共数据集上将MIL-LOF与经典局部离群点检测算法及其优化算法进行了对比实验,结果表明本文提出的MIL-LOF算法在准确性、全面性及高效性上相对其他算法均可获得较为明显的提高.