期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
混凝土抗压强度的可解释深度学习预测模型
1
作者 章伟琪 王辉明 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第5期738-744,752,共8页
为快速、准确地预测混凝土抗压强度,采用深度学习技术建立预测模型,使用贝叶斯优化算法进行模型自动优化调节,并结合SHapley Additive exPlanations(SHAP)可解释性方法对预测结果进行分析,以克服预测模型的“黑盒子”问题.利用深度学习... 为快速、准确地预测混凝土抗压强度,采用深度学习技术建立预测模型,使用贝叶斯优化算法进行模型自动优化调节,并结合SHapley Additive exPlanations(SHAP)可解释性方法对预测结果进行分析,以克服预测模型的“黑盒子”问题.利用深度学习模型挖掘各输入特征参数与抗压强度之间潜在的规律;通过可视化输入特征参数的SHAP值分析参数对抗压强度预测结果的重要性及影响规律.结果表明,所建深度学习模型相比其他传统模型具有更好的性能;SHAP分析结果与试验结果一致,该模型较好地反映了各特征参数之间复杂的非线性关系,可为混凝土材料的工程设计提供依据和参考. 展开更多
关键词 混凝土 抗压强度 深度学习 SHAP方法 可解释性
下载PDF
基于BO-DNN模型的混凝土抗压强度尺寸效应研究 被引量:1
2
作者 章伟琪 王辉明 《硅酸盐通报》 CAS 北大核心 2023年第5期1650-1660,1671,共12页
尺寸效应对混凝土材料力学性能和结构设计有重要影响。目前试验测试仍是混凝土尺寸效应研究主要手段,受限于样本制作周期及复杂的边界和加载条件,综合成本高,结果离散性较大。本文基于深度学习和贝叶斯优化算法,以大量试验数据为基础,... 尺寸效应对混凝土材料力学性能和结构设计有重要影响。目前试验测试仍是混凝土尺寸效应研究主要手段,受限于样本制作周期及复杂的边界和加载条件,综合成本高,结果离散性较大。本文基于深度学习和贝叶斯优化算法,以大量试验数据为基础,建立了不引入任何简化计算假设的混凝土抗压强度尺寸效应深度神经网络模型(BO-DNN),并与已有尺寸效应模型进行了比较分析,通过改变选定特征参数的值来考察各参数对抗压强度尺寸效应的影响。结果表明:水胶比对抗压强度尺寸效应影响显著,水胶比越小,尺寸效应越明显;抗压强度尺寸效应随骨料粒径的增大呈递增趋势,但增幅随粒径的增大有所减缓;高宽比小于2的试件抗压强度尺寸效应随高宽比的增大而增大,超过2以后尺寸效应基本不再增大;试件形状对抗压强度尺寸效应的影响较小;龄期越大,尺寸效应越显著,但龄期超过90 d后尺寸效应现象趋于稳定。本文提出的预测模型泛化能力强,具有更高的精度和稳定性,能较好地挖掘各特征参数之间复杂的非线性关系,为混凝土材料和结构的工程设计提供理论依据和参考。 展开更多
关键词 混凝土 抗压强度 尺寸效应 深度神经网络 贝叶斯优化算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部