A fractional-N frequency synthesizer for 433/868MHz SRD applications is implemented in a 0.3μm CMOS process. A wide-band VCO and an AFC are used to cover the desired bands. A 3bit third order sigma-delta modulator is...A fractional-N frequency synthesizer for 433/868MHz SRD applications is implemented in a 0.3μm CMOS process. A wide-band VCO and an AFC are used to cover the desired bands. A 3bit third order sigma-delta modulator is adopted to reduce the out-band phase noise. The measurements show a VCO tuning range from 1.31 to 1.88GHz with AFC working correctly,an out-band phase noise of -139dBc/Hz at 3MHz offset frequency, and a fractional spur of less than - 60dBc. The chip area is 1.5mm × 1.2mm and the total current dissipation including LO buffers is 19mA from a single 3.0V supply voltage.展开更多
Digital calibration and control techniques for narrow band integrated low-IF receivers with on-chip frequency synthesizer are presented.The calibration and control system,which is adopted to ensure an achievable signa...Digital calibration and control techniques for narrow band integrated low-IF receivers with on-chip frequency synthesizer are presented.The calibration and control system,which is adopted to ensure an achievable signal-to-noise ratio and bit error rate,consists of a digitally controlled,high resolution dB-linear automatic gain control(AGC),an inphase(I) and quadrature(Q) gain and phase mismatch calibration,and an automatic frequency calibration(AFC) of a wideband voltage-controlled oscillator in a PLL based frequency synthesizer.The calibration system has a low design complexity with little power and small die area.Simulation results show that the calibration system can enlarge the dynamic range to 72 dB and minimize the phase and amplitude imbalance between I and Q to 0.08° and 0.024 dB,respectively,which means the image rejection ratio is better than 60 dB.In addition,the calibration time of the AFC is 1.12 μs only with a reference clock of 100 MHz.展开更多
文摘A fractional-N frequency synthesizer for 433/868MHz SRD applications is implemented in a 0.3μm CMOS process. A wide-band VCO and an AFC are used to cover the desired bands. A 3bit third order sigma-delta modulator is adopted to reduce the out-band phase noise. The measurements show a VCO tuning range from 1.31 to 1.88GHz with AFC working correctly,an out-band phase noise of -139dBc/Hz at 3MHz offset frequency, and a fractional spur of less than - 60dBc. The chip area is 1.5mm × 1.2mm and the total current dissipation including LO buffers is 19mA from a single 3.0V supply voltage.
文摘Digital calibration and control techniques for narrow band integrated low-IF receivers with on-chip frequency synthesizer are presented.The calibration and control system,which is adopted to ensure an achievable signal-to-noise ratio and bit error rate,consists of a digitally controlled,high resolution dB-linear automatic gain control(AGC),an inphase(I) and quadrature(Q) gain and phase mismatch calibration,and an automatic frequency calibration(AFC) of a wideband voltage-controlled oscillator in a PLL based frequency synthesizer.The calibration system has a low design complexity with little power and small die area.Simulation results show that the calibration system can enlarge the dynamic range to 72 dB and minimize the phase and amplitude imbalance between I and Q to 0.08° and 0.024 dB,respectively,which means the image rejection ratio is better than 60 dB.In addition,the calibration time of the AFC is 1.12 μs only with a reference clock of 100 MHz.