期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
融合脑电与近红外脑地形图特征学习的多模式分类
1
作者
何群
徐香院
+3 位作者
江国乾
单伟
童云杰
谢平
《中国生物医学工程学报》
CAS
CSCD
北大核心
2023年第3期301-310,共10页
脑地形图可以用来可以监测大脑的活动状态,为了准确提取被试大脑活动产生信号的空间特征以及有效提高分类准确率,结合脑地形图和卷积神经网络提出一种多模态脑地形图神经网络分类算法(MBTMNN),对运动想象和心算进行分类识别。对脑电和...
脑地形图可以用来可以监测大脑的活动状态,为了准确提取被试大脑活动产生信号的空间特征以及有效提高分类准确率,结合脑地形图和卷积神经网络提出一种多模态脑地形图神经网络分类算法(MBTMNN),对运动想象和心算进行分类识别。对脑电和近红外信号进行预处理,提取脑电的能量特征和近红外中氧合血红蛋白浓度特征,结合各自电极位置统一所有样本的colormap后生成脑地形图,将二者同时输入到卷积神经网络并在特征层进行融合得到训练模型。利用2017年柏林脑电-近红外公开数据集进行六折交叉验证实验,数据集包含29名被试,各300个样本,在运动想象左/右、心算/静息、运动想象/心算/静息和运动想象左/右/心算/静息等4种分类场景中,分别达到了82.91%、94%、90.34%和78.18%的准确率,高于同数据集的近期研究和单模态方法。所提出方法能够有效融合脑电和近红外信号以提高分类精度。
展开更多
关键词
脑机接口
多模态
卷积神经网络
脑地形图
下载PDF
职称材料
题名
融合脑电与近红外脑地形图特征学习的多模式分类
1
作者
何群
徐香院
江国乾
单伟
童云杰
谢平
机构
燕山大学电气工程学院
燕山大学图书馆
普渡大学生物医学工程系
出处
《中国生物医学工程学报》
CAS
CSCD
北大核心
2023年第3期301-310,共10页
基金
国家自然科学基金(U20A20192,62076216)
秦皇岛市科学技术研究与发展计划项目(201902A032)。
文摘
脑地形图可以用来可以监测大脑的活动状态,为了准确提取被试大脑活动产生信号的空间特征以及有效提高分类准确率,结合脑地形图和卷积神经网络提出一种多模态脑地形图神经网络分类算法(MBTMNN),对运动想象和心算进行分类识别。对脑电和近红外信号进行预处理,提取脑电的能量特征和近红外中氧合血红蛋白浓度特征,结合各自电极位置统一所有样本的colormap后生成脑地形图,将二者同时输入到卷积神经网络并在特征层进行融合得到训练模型。利用2017年柏林脑电-近红外公开数据集进行六折交叉验证实验,数据集包含29名被试,各300个样本,在运动想象左/右、心算/静息、运动想象/心算/静息和运动想象左/右/心算/静息等4种分类场景中,分别达到了82.91%、94%、90.34%和78.18%的准确率,高于同数据集的近期研究和单模态方法。所提出方法能够有效融合脑电和近红外信号以提高分类精度。
关键词
脑机接口
多模态
卷积神经网络
脑地形图
Keywords
brain-computer interface(BCI)
multi-modal
convolutional neural network(CNN)
brain topographic map
分类号
R318 [医药卫生—生物医学工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
融合脑电与近红外脑地形图特征学习的多模式分类
何群
徐香院
江国乾
单伟
童云杰
谢平
《中国生物医学工程学报》
CAS
CSCD
北大核心
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部