目的:探讨乙酰半胱氨酸注射液致血管性水肿的原因及治疗方法。方法:分析江苏省中医院内分泌科2022年10月收治的1例糖尿病肾病患者因注射乙酰半胱氨酸注射液致血管性水肿的可能性及治疗方法。结果:1例54岁男性患者因发现血糖升高20年余,...目的:探讨乙酰半胱氨酸注射液致血管性水肿的原因及治疗方法。方法:分析江苏省中医院内分泌科2022年10月收治的1例糖尿病肾病患者因注射乙酰半胱氨酸注射液致血管性水肿的可能性及治疗方法。结果:1例54岁男性患者因发现血糖升高20年余,尿沫多3月余入院。入院第4天给予乙酰半胱氨酸注射液8 g+果糖注射液250 m L静脉滴注,第6天患者输液后出现右手手背和面部水肿的血管性水肿症状,立即停药并给予抗过敏治疗,对症治疗后患者上述症状消失,入院第11天病情好转出院。结论:乙酰半胱氨酸注射液很可能引起患者血管性水肿。注射该药物时应注意减小滴速,谨慎用于有药物过敏史、哮喘的患者,同时注射时应注意监护。展开更多
Fractional orbital angular momentum(OAM) vortex beams present a promising way to increase the data throughput in optical communication systems. Nevertheless, high-precision recognition of fractional OAM with different...Fractional orbital angular momentum(OAM) vortex beams present a promising way to increase the data throughput in optical communication systems. Nevertheless, high-precision recognition of fractional OAM with different propagation distances remains a significant challenge. We develop a convolutional neural network(CNN)method to realize high-resolution recognition of OAM modalities, leveraging asymmetric Bessel beams imbued with fractional OAM. Experimental results prove that our method achieves a recognition accuracy exceeding 94.3% for OAM modes, with an interval of 0.05, and maintains a high recognition accuracy above 92% across varying propagation distances. The findings of our research will be poised to significantly contribute to the deployment of fractional OAM beams within the domain of optical communications.展开更多
文摘目的:探讨乙酰半胱氨酸注射液致血管性水肿的原因及治疗方法。方法:分析江苏省中医院内分泌科2022年10月收治的1例糖尿病肾病患者因注射乙酰半胱氨酸注射液致血管性水肿的可能性及治疗方法。结果:1例54岁男性患者因发现血糖升高20年余,尿沫多3月余入院。入院第4天给予乙酰半胱氨酸注射液8 g+果糖注射液250 m L静脉滴注,第6天患者输液后出现右手手背和面部水肿的血管性水肿症状,立即停药并给予抗过敏治疗,对症治疗后患者上述症状消失,入院第11天病情好转出院。结论:乙酰半胱氨酸注射液很可能引起患者血管性水肿。注射该药物时应注意减小滴速,谨慎用于有药物过敏史、哮喘的患者,同时注射时应注意监护。
基金National Natural Science Foundation of China(Nos.U2037601,51821001)Key Basic Research Project of the National Basic Strengthening Plan,China(No.2022-xxxx-ZD-093-xx)。
基金supported by the National Natural Science Foundation of China (Grant Nos.12174338 and 11874321)。
文摘Fractional orbital angular momentum(OAM) vortex beams present a promising way to increase the data throughput in optical communication systems. Nevertheless, high-precision recognition of fractional OAM with different propagation distances remains a significant challenge. We develop a convolutional neural network(CNN)method to realize high-resolution recognition of OAM modalities, leveraging asymmetric Bessel beams imbued with fractional OAM. Experimental results prove that our method achieves a recognition accuracy exceeding 94.3% for OAM modes, with an interval of 0.05, and maintains a high recognition accuracy above 92% across varying propagation distances. The findings of our research will be poised to significantly contribute to the deployment of fractional OAM beams within the domain of optical communications.