期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
完全浸泡再生混凝土Mg^(2+)-SO_(4)^(2-)-Cl^(-)侵蚀耐久性损伤规律与机理
1
作者 王家滨 张凯峰 +1 位作者 郑康华 符梦涛 《材料导报》 EI CAS CSCD 北大核心 2024年第18期67-77,共11页
我国西北地区的土壤与地下水中含有高浓度Mg^(2+)、SO_(4)^(2-)、Cl^(-),这些离子导致长期掩埋于地下的再生混凝土(RAC)结构耐久性严重退化。为了揭示Mg^(2+)-SO_(4)^(2-)-Cl^(-)侵蚀RAC耐久性损伤规律与机理,采用长期浸泡的方式,系统... 我国西北地区的土壤与地下水中含有高浓度Mg^(2+)、SO_(4)^(2-)、Cl^(-),这些离子导致长期掩埋于地下的再生混凝土(RAC)结构耐久性严重退化。为了揭示Mg^(2+)-SO_(4)^(2-)-Cl^(-)侵蚀RAC耐久性损伤规律与机理,采用长期浸泡的方式,系统开展复掺辅助胶凝材料RAC耐久性试验,研究复掺辅助胶凝材料方式与取代率对RAC耐久性退化规律的影响。采用X射线衍射、红外光谱及热重等分析手段,表征RAC侵蚀产物物相组成与相对含量,揭示复合盐侵蚀RAC耐久性损伤机理。结果表明,10%粉煤灰(质量分数)+20%(质量分数)矿渣复掺RAC耐久性较高,硅灰或偏高岭土取代率高于10%时RAC的耐久性较差。侵蚀离子与RAC水化产物产生化学反应并形成晶粒极大的侵蚀产物,加速C-S-H分解向M-S-H转变;高浓度离子间相互作用形成物理盐结晶,促进裂缝的萌生扩展。化学/物理双重作用破坏RAC微观结构,加速离子扩散传输,形成化学侵蚀-结构损伤-离子传输过程。RAC界面过渡区及砂浆中遍布裂缝与孔隙,再生混凝土物理力学性能急速退化。 展开更多
关键词 耐久性 再生混凝土 Mg^(2+)-SO_(4)^(2-)-Cl^(-)侵蚀 完全浸泡 损伤机理
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部