期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于GF-2遥感影像的机械性破损面提取方法
被引量:
2
1
作者
夏既胜
马梦莹
符钟壬
《国土资源遥感》
CSCD
北大核心
2020年第2期26-32,共7页
机械性破损面容易引发水土流失、次生地质灾害等生态环境问题,但目前还缺乏其基于遥感影像的有效提取方法。选择机械性破损面分布密集的云南省螳螂川流域为研究对象,基于高分二号(GF-2)遥感影像,探讨其基于纹理特征辅助的面向对象提取...
机械性破损面容易引发水土流失、次生地质灾害等生态环境问题,但目前还缺乏其基于遥感影像的有效提取方法。选择机械性破损面分布密集的云南省螳螂川流域为研究对象,基于高分二号(GF-2)遥感影像,探讨其基于纹理特征辅助的面向对象提取方法。根据7类地物特征建立地物分类规则,在最优尺度分割的基础上,基于光谱特征的决策树A和基于“光谱+纹理”特征的决策树B进行面向对象的分类。经过精度评价分析得出,相对于传统的监督分类法和仅基于光谱的面向对象分类法,基于“光谱+纹理”特征的决策树B分类方法使Kappa系数和总精度分别提高至0.82和86.25%,有效地提高了机械性破损面的提取精度。
展开更多
关键词
高分二号(GF-2)
机械性破损面
面向对象分类法
决策树
下载PDF
职称材料
题名
基于GF-2遥感影像的机械性破损面提取方法
被引量:
2
1
作者
夏既胜
马梦莹
符钟壬
机构
云南大学地球科学学院
出处
《国土资源遥感》
CSCD
北大核心
2020年第2期26-32,共7页
基金
国家自然科学基金项目“云南金沙江流域典型区机械破损面空间格局变化与生态响应”(项目编号:41461103)资助。
文摘
机械性破损面容易引发水土流失、次生地质灾害等生态环境问题,但目前还缺乏其基于遥感影像的有效提取方法。选择机械性破损面分布密集的云南省螳螂川流域为研究对象,基于高分二号(GF-2)遥感影像,探讨其基于纹理特征辅助的面向对象提取方法。根据7类地物特征建立地物分类规则,在最优尺度分割的基础上,基于光谱特征的决策树A和基于“光谱+纹理”特征的决策树B进行面向对象的分类。经过精度评价分析得出,相对于传统的监督分类法和仅基于光谱的面向对象分类法,基于“光谱+纹理”特征的决策树B分类方法使Kappa系数和总精度分别提高至0.82和86.25%,有效地提高了机械性破损面的提取精度。
关键词
高分二号(GF-2)
机械性破损面
面向对象分类法
决策树
Keywords
GF-2
mechanical damage surface
object-oriented classification
decision tree
分类号
TP79 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于GF-2遥感影像的机械性破损面提取方法
夏既胜
马梦莹
符钟壬
《国土资源遥感》
CSCD
北大核心
2020
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部