讨论了铝热还原二氧化硅的热力学条件,热力学计算结果表明铝热还原二氧化硅的反应在热力学上可行.差示扫描量热法分析结果表明,铝热还原二氧化硅反应的表观活化能为697.5 k J/mol,反应级数为3.7.在冰晶石熔盐介质中铝热还原二氧化硅,可...讨论了铝热还原二氧化硅的热力学条件,热力学计算结果表明铝热还原二氧化硅的反应在热力学上可行.差示扫描量热法分析结果表明,铝热还原二氧化硅反应的表观活化能为697.5 k J/mol,反应级数为3.7.在冰晶石熔盐介质中铝热还原二氧化硅,可得到含8.56%硅的铝硅合金及富氧化铝的冰晶石熔盐;使用惰性阳极电解分离后的富氧化铝的冰晶石熔盐,可得到含94.01%铝的铝硅合金及氧气,硅的回收率为83.43%.展开更多
To develop Martian soil simulant,basalts of the Chahar volcanic group in Wulanchabu,Inner Mongolia,China were selected as the simulant initial materials,which were ground and sorted to a predetermined particle size ra...To develop Martian soil simulant,basalts of the Chahar volcanic group in Wulanchabu,Inner Mongolia,China were selected as the simulant initial materials,which were ground and sorted to a predetermined particle size ratio,and small amounts of magnetite and hematite were added.The main phases of NEU Mars-1 simulant were plagioclase,augite and olivine.The glass transition and crystallization temperatures of NEU Mars-1 were 547.8 and 795.7°C,respectively.The complex dielectric constant,magnetic conductivity(0.99-1.045),and dielectric loss tangent angles(0.0025-0.030)of NEU Mars-1 were all stable in the frequency range of 2-18 GHz.Mossbauer spectroscopy results showed that the mass ratio of Fe2+to Fe3+in the simulant was 77.6:22.4.The NEU Mars-1 Martian soil simulant demonstrated particle size ratio,chemical composition,phase composition,thermal stability,and dielectric property similar to Martian soil,and can be used as the substitute material to extract oxygen and metals with in-situ resource utilization technologies.展开更多
文摘讨论了铝热还原二氧化硅的热力学条件,热力学计算结果表明铝热还原二氧化硅的反应在热力学上可行.差示扫描量热法分析结果表明,铝热还原二氧化硅反应的表观活化能为697.5 k J/mol,反应级数为3.7.在冰晶石熔盐介质中铝热还原二氧化硅,可得到含8.56%硅的铝硅合金及富氧化铝的冰晶石熔盐;使用惰性阳极电解分离后的富氧化铝的冰晶石熔盐,可得到含94.01%铝的铝硅合金及氧气,硅的回收率为83.43%.
基金Project(2017YFC0805100)supported by the National Key R&D Program of ChinaProject(GUIKE AA18118030)supported by Guangxi Innovation-driven Development Program,ChinaProject(N172502003)supported by the Fundamental Research Funds for the Central Universities,China.
文摘To develop Martian soil simulant,basalts of the Chahar volcanic group in Wulanchabu,Inner Mongolia,China were selected as the simulant initial materials,which were ground and sorted to a predetermined particle size ratio,and small amounts of magnetite and hematite were added.The main phases of NEU Mars-1 simulant were plagioclase,augite and olivine.The glass transition and crystallization temperatures of NEU Mars-1 were 547.8 and 795.7°C,respectively.The complex dielectric constant,magnetic conductivity(0.99-1.045),and dielectric loss tangent angles(0.0025-0.030)of NEU Mars-1 were all stable in the frequency range of 2-18 GHz.Mossbauer spectroscopy results showed that the mass ratio of Fe2+to Fe3+in the simulant was 77.6:22.4.The NEU Mars-1 Martian soil simulant demonstrated particle size ratio,chemical composition,phase composition,thermal stability,and dielectric property similar to Martian soil,and can be used as the substitute material to extract oxygen and metals with in-situ resource utilization technologies.