期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进Yolov5的地铁隧道附属设施与衬砌表观病害检测方法
被引量:
13
1
作者
朱家松
郑澳
+3 位作者
雷占占
练敏青
杨军伍
李林超
《铁道科学与工程学报》
EI
CAS
CSCD
北大核心
2023年第3期1008-1019,共12页
随着地铁隧道服役时间增长,隧道衬砌在多因素影响下病害频发,对隧道结构及临近附属设施造成不良影响,严重危及到行车安全。因此,亟需精确高效的地铁隧道病害及设施检测技术。然而,地铁隧道存在内部环境复杂,附属设施与衬砌病害纹理及灰...
随着地铁隧道服役时间增长,隧道衬砌在多因素影响下病害频发,对隧道结构及临近附属设施造成不良影响,严重危及到行车安全。因此,亟需精确高效的地铁隧道病害及设施检测技术。然而,地铁隧道存在内部环境复杂,附属设施与衬砌病害纹理及灰度相似、目标尺度不一等检测难点,传统的人工巡检及数字图像处理方法均存在局限。针对上述问题,提出一种基于改进Yolov5的地铁隧道附属设施及衬砌表观病害检测模型。针对设施及病害的位置特征引入坐标注意力(Coordinate attention)引导模型对目标区域赋予更高权重,抑制背景噪声;采用Bi FPN(Bi-directional Feature Pyramid Network)特征融合网络提升小目标病害检测效果;并利用Ghost Bottleneck替代部分卷积减少模型参数,提高检测效率。为验证改进后模型检测性能,进行现场实验,构建样本数量为843的地铁隧道衬砌图像数据集。并采用随机裁剪、镜像翻转等数据增强方法,将样本量扩充至4 072。数据集上的实验结果表明,改进模型的平均精度均值(m AP)可达89.2%,较原模型提高了3.7%,有效提升了隧道环境中小目标病害的检测效果。且模型参数减少了12%,更有利边缘端部署。相比于其他隧道检测模型,改进后的模型在综合性能上更具优势,可为地铁隧道衬砌病害实时检测和附属设施数字化提供技术支持。
展开更多
关键词
地铁隧道
衬砌检测
深度学习
目标检测
下载PDF
职称材料
题名
基于改进Yolov5的地铁隧道附属设施与衬砌表观病害检测方法
被引量:
13
1
作者
朱家松
郑澳
雷占占
练敏青
杨军伍
李林超
机构
深圳大学土木与交通工程学院
深圳大学建筑与城市规划学院
深圳市地铁集团有限公司
出处
《铁道科学与工程学报》
EI
CAS
CSCD
北大核心
2023年第3期1008-1019,共12页
基金
国家重点研发计划资助项目(2018YFB2101000)
深圳市地铁集团有限公司科研咨询服务(STJS-DT413-KY002/2021)
+2 种基金
深圳市科技创新委项目-稳定支持面上项目(20200812102651001)
广东省区域联合基金青年项目(2020A1515110438)
广东省自然科学基金面上项目(2022A1515010939)。
文摘
随着地铁隧道服役时间增长,隧道衬砌在多因素影响下病害频发,对隧道结构及临近附属设施造成不良影响,严重危及到行车安全。因此,亟需精确高效的地铁隧道病害及设施检测技术。然而,地铁隧道存在内部环境复杂,附属设施与衬砌病害纹理及灰度相似、目标尺度不一等检测难点,传统的人工巡检及数字图像处理方法均存在局限。针对上述问题,提出一种基于改进Yolov5的地铁隧道附属设施及衬砌表观病害检测模型。针对设施及病害的位置特征引入坐标注意力(Coordinate attention)引导模型对目标区域赋予更高权重,抑制背景噪声;采用Bi FPN(Bi-directional Feature Pyramid Network)特征融合网络提升小目标病害检测效果;并利用Ghost Bottleneck替代部分卷积减少模型参数,提高检测效率。为验证改进后模型检测性能,进行现场实验,构建样本数量为843的地铁隧道衬砌图像数据集。并采用随机裁剪、镜像翻转等数据增强方法,将样本量扩充至4 072。数据集上的实验结果表明,改进模型的平均精度均值(m AP)可达89.2%,较原模型提高了3.7%,有效提升了隧道环境中小目标病害的检测效果。且模型参数减少了12%,更有利边缘端部署。相比于其他隧道检测模型,改进后的模型在综合性能上更具优势,可为地铁隧道衬砌病害实时检测和附属设施数字化提供技术支持。
关键词
地铁隧道
衬砌检测
深度学习
目标检测
Keywords
metro tunnel
lining inspection
deep learning
objection detection
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进Yolov5的地铁隧道附属设施与衬砌表观病害检测方法
朱家松
郑澳
雷占占
练敏青
杨军伍
李林超
《铁道科学与工程学报》
EI
CAS
CSCD
北大核心
2023
13
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部