近年来,人口空间化的方法理论愈趋成熟,但对人口空间化建模中变量参数的空间平稳性处理却鲜有人关注。以土地利用数据、夜间灯光数据和人口统计数据为数据源,提出一种基于半参数地理加权回归模型(semi-parametric geographically weight...近年来,人口空间化的方法理论愈趋成熟,但对人口空间化建模中变量参数的空间平稳性处理却鲜有人关注。以土地利用数据、夜间灯光数据和人口统计数据为数据源,提出一种基于半参数地理加权回归模型(semi-parametric geographically weighted regression,S-GWR)的人口空间化方法,并利用该模型在县级尺度进行常住人口空间化建模,最后以四川省为研究区进行比较论证。在分析变量特征的同时,利用S-GWR模型处理参数变量的空间平稳性,以提高人口估计的精度,最后生成四川省2010年1 km分辨率的人口空间分布图(spatial distribution of population,SDP)。结果表明,S-GWR模型的决定系数为0.903,比传统回归模型表现更好,模型拟合的效果更优。精度验证方面,通过2个常用的人口数据集进行精度对比验证;在县一级,研究区整体SDP的平均误差和每个区县的相对误差都接近于0,比其他2个数据集有更高的精度;在乡镇一级,SDP的平均相对误差、平均绝对误差和均方根误差分别为34.54%,5715.703人和12085.932人,均比其他2个数据集的误差更小,离散度效果更优;从乡镇准确估计个数来看,SDP准确估计的个数最多,达185个。因此,考虑参数的空间平稳性可以提高人口空间化的精度。展开更多
文摘近年来,人口空间化的方法理论愈趋成熟,但对人口空间化建模中变量参数的空间平稳性处理却鲜有人关注。以土地利用数据、夜间灯光数据和人口统计数据为数据源,提出一种基于半参数地理加权回归模型(semi-parametric geographically weighted regression,S-GWR)的人口空间化方法,并利用该模型在县级尺度进行常住人口空间化建模,最后以四川省为研究区进行比较论证。在分析变量特征的同时,利用S-GWR模型处理参数变量的空间平稳性,以提高人口估计的精度,最后生成四川省2010年1 km分辨率的人口空间分布图(spatial distribution of population,SDP)。结果表明,S-GWR模型的决定系数为0.903,比传统回归模型表现更好,模型拟合的效果更优。精度验证方面,通过2个常用的人口数据集进行精度对比验证;在县一级,研究区整体SDP的平均误差和每个区县的相对误差都接近于0,比其他2个数据集有更高的精度;在乡镇一级,SDP的平均相对误差、平均绝对误差和均方根误差分别为34.54%,5715.703人和12085.932人,均比其他2个数据集的误差更小,离散度效果更优;从乡镇准确估计个数来看,SDP准确估计的个数最多,达185个。因此,考虑参数的空间平稳性可以提高人口空间化的精度。