期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
SSAE和IGWO-SVM的滚动轴承故障诊断 被引量:17
1
作者 袁宪锋 颜子琛 +2 位作者 周风余 宋勇 缪昭明 《振动.测试与诊断》 EI CSCD 北大核心 2020年第2期405-413,424,共10页
针对滚动轴承的故障诊断问题,提出了一种基于栈式稀疏自编码网络(stacked sparse auto encoder,简称SSAE)、改进灰狼智能优化算法(improved grey wolf optimization,简称IGWO)以及支持向量机(support vector machine,简称SVM)的混合智... 针对滚动轴承的故障诊断问题,提出了一种基于栈式稀疏自编码网络(stacked sparse auto encoder,简称SSAE)、改进灰狼智能优化算法(improved grey wolf optimization,简称IGWO)以及支持向量机(support vector machine,简称SVM)的混合智能故障诊断模型。首先,利用栈式自编码网络强大的特征自提取能力,实现故障信号深层频谱特征的自适应学习,通过引入稀疏项约束提高特征学习的泛化性能;其次,利用改进的灰狼算法实现支持向量机的参数优化;最后,基于优化后的SVM完成对故障特征向量的分类识别。所提混合智能故障诊断模型充分结合了深度神经网络强大的特征自学习能力和支持向量机优秀的小样本分类性能,避免了手工特征提取的弊端,可对不同故障类型的振动信号实现更精准的识别。多组对比实验表明,相比传统方法,笔者所提出的模型具有更优秀的故障识别能力,诊断准确率可达98%以上。 展开更多
关键词 滚动轴承故障诊断 栈式稀疏自编码网络 特征提取 灰狼算法 支持向量机
下载PDF
基于SE-CNN的服务机器人运动系统云端故障诊断方法 被引量:13
2
作者 缪昭明 袁宪锋 +4 位作者 张晖 颜亮 周风余 郭仁和 汪佳宇 《机器人》 EI CSCD 北大核心 2021年第3期321-330,共10页
研究并设计了一种基于服务机器人云平台的故障诊断系统.传统算法只关注服务机器人某一时刻的状态数据,所提取的特征信息有限,因而难以较好地完成故障诊断任务.在这种背景下,提出了基于时间序列关联特征的故障诊断方法.首先,对采集的服... 研究并设计了一种基于服务机器人云平台的故障诊断系统.传统算法只关注服务机器人某一时刻的状态数据,所提取的特征信息有限,因而难以较好地完成故障诊断任务.在这种背景下,提出了基于时间序列关联特征的故障诊断方法.首先,对采集的服务机器人数据进行归一化和后向差分预处理,消除数据量纲并获取数据变化特征;其次,利用滑动窗口来生成时间序列样本,保证每个样本包含足够的特征信息;然后,应用卷积神经网络(CNN)挖掘时间序列的关联特征,并在网络中引入通道注意力网络(squeeze-and-excitation network,SENet),构建了一种SE-CNN模型.该模型能够自适应调整特征通道的重要程度,聚焦于更有效的特征通道,从而提高了诊断精度.对比实验与实际场景下的综合测试证明了本文提出的故障自诊断方法的可行性和有效性. 展开更多
关键词 服务机器人 故障诊断 云服务 关联特征
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部