针对传统反应扩散(reaction-diffusion,R-D)机制不适合纳米互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)集成电路正偏置温度不稳定性(positive bias temperature instability,PBTI)老化效应分析的问题,文章采...针对传统反应扩散(reaction-diffusion,R-D)机制不适合纳米互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)集成电路正偏置温度不稳定性(positive bias temperature instability,PBTI)老化效应分析的问题,文章采用电荷俘获-释放(trapping-detrapping,T-D)机制,结合线性分析和数据拟合方法,建立了N型金属氧化物半导体(negative channel metal oxide semiconductor,NMOS)管PBTI效应引起的基本逻辑门单元的时延退化预测模型。仿真实验结果表明,采用该模型的电路PBTI老化预测结果与HSpice软件仿真得到的时延预测结果相比,平均误差为2%;关键路径时序余量评估实验表明,与基于R-D机制的老化时延模型相比,在相同的电路生命周期要求下,该模型需要的时序余量更小。展开更多
文摘针对传统反应扩散(reaction-diffusion,R-D)机制不适合纳米互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)集成电路正偏置温度不稳定性(positive bias temperature instability,PBTI)老化效应分析的问题,文章采用电荷俘获-释放(trapping-detrapping,T-D)机制,结合线性分析和数据拟合方法,建立了N型金属氧化物半导体(negative channel metal oxide semiconductor,NMOS)管PBTI效应引起的基本逻辑门单元的时延退化预测模型。仿真实验结果表明,采用该模型的电路PBTI老化预测结果与HSpice软件仿真得到的时延预测结果相比,平均误差为2%;关键路径时序余量评估实验表明,与基于R-D机制的老化时延模型相比,在相同的电路生命周期要求下,该模型需要的时序余量更小。